【视觉SLAM14讲】ch4心得与课后题答案【仅供参考】
答案:
Q1:验证SO(3) SE(3) Sim(3)关于乘法成群
SO(3) : 由P64最开始可知,乘法代表了旋转,而SO(3)是旋转矩阵的集合,
SE(3) Sim(3) 同理(最基础的部分还是旋转,平移和缩放只是附加的)
Q2:验证(R3, R, X)构成李代数
满足李代数定义的四条性质:
封闭性:对于任意的三维向量X Y,他们的内积仍然是三维向量
双线性:显然可得
自反性:sin(0°) = 0
雅克比等价: 只可以举一个特殊的例子,在笛卡尔坐标系下考虑就是三个零相加 待大神补充
Q3:验证so(3) se(3)构成李代数
so(3)的元素是一个三维向量/三维反对称矩阵, 并将这个元素记做 φ 其李括号是[φ1,φ2] = [φ1φ2 - φ2φ1]V
封闭性:
双线性:
自反性:显然可得
雅克比等价:待大神补充
se(3)的元素是一个六维向量,上面是平移,下面同so(3)
封闭性:
双线性:
自反性:显然可得
雅克比等价:待大神补充
Q4:
Q5:
Q6:
Q7:
学习心得:
在研究SLAM时候,除了对三维世界刚体运动表示外(ch3),由于噪声的影响,还要进行对可能的位姿进行优化,而旋转矩阵必须得是行列式为1的正交矩阵,
为了减少这种约束,我们希望通过李群和李代数之间的关系,把位姿估计变为无约束的问题
李群和李代数是群论里的一部分,我们研究的SO(3) SE(3)都是李群,SO(3) SE(3)只有乘法没有加法,既然没有加法,就不存在取极限,更没有求导了
所以引入李代数来实现求导,进而引出了扰动模型
Q:实践时发现看了这么多公式的推演,但还是没法动手写代码,甚至连阅读demo code都是一件费劲的事情!
Solution:1.研读代码和公式,学习代码



缺陷
虽然数学推导确实很难,但其实做数学推导还是有很多好处的,比如可以加深对公式的理解和记忆,以后看到类似paper的时候就不会感到晕了【类比思想嘛】,比如相似变换群(Sim(3))
但即使这样做下来,除了对SO(3) 和 se(3)有一些很好的把握外,变换矩阵的还有点不太清楚,第二遍争取可以把公式再梳理一遍
【视觉SLAM14讲】ch4心得与课后题答案【仅供参考】的更多相关文章
- c++面向对象程序设计 课后题 答案 谭浩强 第四章
c++面向对象程序设计课后题答案 谭浩强 第四章 1: #include <iostream> using namespace std; class Complex {public: Co ...
- C程序设计(谭浩强)第五版课后题答案 第一章
大家好,这篇文章分享了C程序设计(谭浩强)第五版课后题答案,所有程序已经测试能够正常运行,如果小伙伴发现有错误的的地方,欢迎留言告诉我,我会及时改正!感谢大家的观看!!! 1.什么是程序?什么是程序设 ...
- 【视觉SLAM14讲】ch3课后题答案
1.验证旋转矩阵是正交矩阵 感觉下面这篇博客写的不错 http://www.cnblogs.com/caster99/p/4703033.html 总结一下:旋转矩阵是一个完美的矩阵——正交矩阵.①行 ...
- javase程序设计课后题答案
;第1章 Java概述 编译java application源程序文件将产生相应的字节码文件,这些字节码文件别的扩展名为.java 执行一个java程序fristapp的方法是运行java frist ...
- c++ primer plus 第七章 课后题答案
#include <iostream> using namespace std; double HAR_AVG(double, double); void TEST(bool); int ...
- c++ primer plus 第六章 课后题答案
#include <iostream> #include <cctype> using namespace std; int main() { char in_put; do ...
- c++ primer plus 第五章 课后题答案
#include <iostream> using namespace std; int main() { ; cout << "Please enter two n ...
- c++ primer plus 第四章 课后题答案
#include<iostream> #include<string> using namespace std; int main() { string first_name; ...
- c++ primer plus 第三章 课后题答案
#include<iostream> using namespace std; int main() { ; int shen_gao; cout <<"Please ...
随机推荐
- Poj(2421),Prim最小生成树
题目链接:http://poj.org/problem?id=2421 最小生成树的变形,有的村庄已经连接了,就直接把他们的权值赋为0,一样的做最小生成树,Prim算法. #include <s ...
- C++ Boost库简介
boost是一个准标准库,相当于STL的延续和扩充,它的设计理念和STL比较接近,都是利用泛型让复用达到最大化.不过对比STL,boost更加实用.STL集中在算法部分,而boost包含了不少工具类, ...
- OC#import和#include的异同
1.#import和#include相同1.1都可以用在OC程序中起到导入文件的作用1.2同样的 包含系统文件都是<>,是包本地文件都用""例如:系统文件#import ...
- CRC32为例详细解析(菜鸟至老鸟进阶)
CRC-知识解析 cyclic redundancy check 写在前面的话: 之前在做学校项目的时候用到了CRC 原理,但在网上查找的过程中,发现讲解CRC知识的资源很多,但是对新手比较友好的.讲 ...
- 洛谷P4316 绿豆蛙的归宿(期望)
题意翻译 「Poetize3」 题目背景 随着新版百度空间的上线,Blog宠物绿豆蛙完成了它的使命,去寻找它新的归宿. 题目描述 给出一个有向无环图,起点为1终点为N,每条边都有一个长度,并且从起点出 ...
- C/C++程序基础 (十)模板和泛型
什么是泛型编程 基于模板,有效将算法和数据结构分离. 模板 包括类型和参数 模板函数:抽象的函数定义,代表一类同构函数.编译器在其调用位置自动完成对应模板函数的实例化. 模板类:抽象的类定义,代表更高 ...
- Spring 中IOC(控制反转)&& 通过SET方式为属性注入值 && Spring表达式
### 1. Spring IoC IoC:Inversion of control:控制反转:在传统开发模式下,对象的创建过程和管理过程都是由开发者通过Java程序来实现的,操作权在开发者的Java ...
- 交换机基础配置之结合以太通道的vlan设置
我们将以上面的拓扑图来做实验,建立以太通道,并设置好vlan,将pc1和pc3放在同一vlan,将pc2和pc4放在同一vlan,同一vlan能跨交换机通信 在一切还没布置之前,四台pc机都在同一网段 ...
- java-反射和代理
1.类的编译和运行简易过程: java的源码文件(也称为编译单元,以.java为后缀的文件) ↓ 文件内最多只能有一个public修饰的类,否则编译器报错:某个类被public修饰,该类名必需与文件名 ...
- RESTful API架构和oauth2.0认证机制(概念版)
1. 什么是REST REST全称是Representational State Transfer,中文意思是表述(编者注:通常译为表征)性状态转移. 它首次出现在2000年Roy Fielding的 ...