点此看题面

大致题意: 给你每条边的流量上下界,让你先判断是否存在可行流。若存在,则输出最大流。

无源汇上下界可行流

在做此题之前,最好先去看看这道题目:【LOJ115】无源汇有上下界可行流

大致思路

首先,我们先跑一遍无源汇上下界可行流,同时判断是否有解。

等会儿,这题是有源汇的,而刚才提到的可行流是无源汇的,怎么办?

答:没关系!

直接从汇点向源点连一条下界为\(0\)、上界为\(INF\)的边,然后再按无源汇上下界可行流的套路建虚拟源汇做即可。

但还有个问题,这样跑出来的肯定不是最大流,那该怎么办?

我们只需在跑完可行流之后的图上再跑遍最大流,就可求出答案了。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 202
#define M 9999
#define min(x,y) ((x)<(y)?(x):(y))
#define INF 1e9
using namespace std;
int n,m,s,t;
class FastIO
{
private:
#define FS 100000
#define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
#define tn (x<<3)+(x<<1)
#define D isdigit(c=tc())
char c,*A,*B,FI[FS];
public:
I FastIO() {A=B=FI;}
Tp I void read(Ty& x) {x=0;W(!D);W(x=tn+(c&15),D);}
Ts I void read(Ty& x,Ar&... y) {read(x),read(y...);}
}F;
class UpperLowerMaxFlow_with_ST//有源汇有上下界最大流
{
private:
#define add(x,y,v) (e[++ee].nxt=lnk[x],e[lnk[x]=ee].to=y,e[ee].Cap=v)
#define AddOneWayEdge(x,y,v) (add(x,y,v),add(y,x,0))
static Con int Psz=N+2,Lsz=N+M+1<<1;int ee,lnk[Psz+5],cur[Psz+5],v[Psz+5],q[Psz+5],dep[Psz+5];
struct edge {int to,nxt,Cap;}e[Lsz+5];
I bool BFS(CI s,CI t)//BFS找增广路
{
RI i,k,H=1,T=1;memset(dep,0,sizeof(dep)),dep[q[1]=s]=1;W(H<=T&&!dep[t])
for(i=lnk[k=q[H++]];i;i=e[i].nxt) e[i].Cap&&!dep[e[i].to]&&(dep[q[++T]=e[i].to]=dep[k]+1);
return dep[t]?(memcpy(cur,lnk,sizeof(lnk)),true):false;
}
I int DFS(CI x,RI f,CI t)//DFS统计流量
{
if(!(x^t)||!f) return f;RI i,p,res=0;
for(i=cur[x];i;i=e[i].nxt)
{
if(cur[x]=i,(dep[x]+1)^dep[e[i].to]||!(p=DFS(e[i].to,min(f,e[i].Cap),t))) continue;
if(e[i].Cap-=p,e[((i-1)^1)+1].Cap+=p,res+=p,!(f-=p)) break;
}return !res&&(dep[x]=-1),res;
}
I bool FeasibleFlow()//无源汇有上下界可行流
{
RI i;for(i=P(1);i<=P(n);++i) v[i]>0&&AddOneWayEdge(s,i,v[i]),v[i]<0&&AddOneWayEdge(i,t,-v[i]);
W(BFS(s,t)) DFS(s,INF,t);for(i=lnk[s];i;i=e[i].nxt) if(e[i].Cap) return false;return true;
}
public:
int s,t;I UpperLowerMaxFlow_with_ST() {s=1,t=2;}I int P(CI x) {return x+2;}
I void Add(CI x,CI y,CI Lower,CI Upper) {AddOneWayEdge(x,y,Upper-Lower),v[x]-=Lower,v[y]+=Lower;}
I void MaxFlow(CI S,CI T)//最大流
{
if(Add(T,S,0,INF),!FeasibleFlow()) return (void)(puts("please go home to sleep"));
RI res=0;W(BFS(S,T)) res+=DFS(S,INF,T);printf("%d",res);//求解并输出答案
}
}V;
int main()
{
RI i,x,y,Lower,Upper;for(F.read(n,m,s,t),i=1;i<=m;++i) F.read(x,y,Lower,Upper),V.Add(V.P(x),V.P(y),Lower,Upper);//建边
return V.MaxFlow(V.P(s),V.P(t)),0;//求解答案
}

【LOJ116】有源汇有上下界最大流(模板题)的更多相关文章

  1. LOJ116 - 有源汇有上下界最大流

    原题链接 Description 模板题啦~ Code //有源汇有上下界最大流 #include <cstdio> #include <cstring> #include & ...

  2. LOJ116 有源汇有上下界最大流(上下界网络流)

    考虑有源汇上下界可行流:由汇向源连inf边,那么变成无源汇图,按上题做法跑出可行流.此时该inf边的流量即为原图中该可行流的流量.因为可以假装把加上去的那些边的流量放回原图. 此时再从原来的源向原来的 ...

  3. LibreOJ #116. 有源汇有上下界最大流

    二次联通门 : LibreOJ #116. 有源汇有上下界最大流 /* LibreOJ #116. 有源汇有上下界最大流 板子题 我也就会写写板子题了.. 写个板子第一个点还死活过不去... 只能打个 ...

  4. 【Loj116】有源汇有上下界最大流(网络流)

    [Loj116]有源汇有上下界最大流(网络流) 题面 Loj 题解 模板题. #include<iostream> #include<cstdio> #include<c ...

  5. loj #116. 有源汇有上下界最大流

    题目链接 有源汇有上下界最大流,->上下界网络流 注意细节,重置cur和dis数组时,有n+2个点 #include<cstdio> #include<algorithm> ...

  6. loj #117. 有源汇有上下界最小流

    题目链接 有源汇有上下界最小流,->上下界网络流 注意细节,边数组也要算上后加到SS,TT边. #include<cstdio> #include<algorithm> ...

  7. LOJ.117.[模板]有源汇有上下界最小流(Dinic)

    题目链接 有源汇有上下界最小流 Sol1. 首先和无源汇网络流一样建图,求SS->TT最大流: 然后连边(T->S,[0,INF]),再求一遍SS->TT最大流,答案为新添加边的流量 ...

  8. [poj] 2396 [zoj] 1994 budget || 有源汇的上下界可行流

    poj原题 zoj原题 //注意zoj最后一行不要多输出空行 现在要针对多赛区竞赛制定一个预算,该预算是一个行代表不同种类支出.列代表不同赛区支出的矩阵.组委会曾经开会讨论过各类支出的总和,以及各赛区 ...

  9. Shoot the Bullet(有源汇带上下界最大流)

    有源汇带上下界最大流 在原图基础上连一条汇点到源点流量为inf的边,将有源汇网络流转化为无源汇网络流用相同方法判断是否满流,如果满流再跑一边源点到汇点的最大流就是答案 例题:Shoot the Bul ...

随机推荐

  1. eclipse安装阿里规范模板

    https://github.com/alibaba/p3c/tree/master/p3c-formatter 1.代码模板(含注释等) 2.代码格式化

  2. (转)Caffe搭建:常见问题解决办法和ubuntu使用中遇到问题(持续更新)

    参考网址:http://www.cnblogs.com/empty16/p/4828476.html 严正声明: 在linux下面使用命令行操作时,一定要懂得命令行的意思,然后再执行,要不然在不知道接 ...

  3. CSS background 属性全家桶

    介绍我们都知道css的background属性是一个复合属性,可以简写成一行代码,也可以将每个属性分开来写. background 简写属性在一个声明中设置所有的背景属性.如:body{ backgr ...

  4. linux终端没有GUI时python使用matplotlib如何画图

    import matplotlib as mpl mpl.use('Agg') #而且必须添加在import matplotlib.pyplot之前,否则无效 ======== ======== == ...

  5. MyCnblog Style

    以下内容添加到页脚HTML代码处 <style> #leftmenu ul { display: none; } .cnblogs-markdown pre code, .cnblogs- ...

  6. Windows 环境下安装MongoDB

    mongoDB下载地址 https://www.mongodb.org/ 在mongoDB官网下载windows版本的mongoDB后解压出来(本文以解压到D盘为例) 在解压出来的MongoDB文件夹 ...

  7. cpp 学习笔记

    1.C++中模仿gets是  getline(cin, string object) #include <bits/stdc++.h> #define IOS ios::sync_with ...

  8. PlayMaker Debug Int/Float/Vector3...

    1.在一个游戏对象上建一个PlayMakerFSM,在状态机里新建几个不同类型的变量: 2.再新加几个Action: 3.运行,结果如下:

  9. C# 进一取整

    C#: // "/"号现在整形运算是取整,浮点运算时为除法运算 Console.WriteLine("(56/10):{0}", 56 / 10);//5 Co ...

  10. NASM在Ubuntu上的安装与简单使用

    一 .安装NASM 1. 下载安装文件 地址是:http://www.nasm.us/pub/nasm/releasebuilds/2.11.08/ 2.解压(具体命令要根据压缩包的类型来选用) 3. ...