Luogu 2149 [SDOI2009]Elaxia的路线
感觉这题可以模板化。
听说spfa死了,所以要练堆优化dijkstra。
首先对$x_{1},y_{1},x_{2},y_{2}$各跑一遍最短路,然后扫一遍所有边看看是不是同时在两个点的最短路里面,如果是的话就把这条边加到一张新图中去,因为最短路一定没有环,所以最后造出来的这张新图一定是一个$DAG$,dp一遍求最长链即为答案。
考虑一下怎么判断一条边是否在最短路里,设这条边连接的两个点是$x$,$y$,边权是$v$,如果它在最短路里面,那么有$dis(x_{1}, x) + v + dis(y_{1}, y) == dis(x_{1}, y_{1})$并且$dis(x_{2}, x) + v + dis(y_{2}, y) == dis(x_{2}, y_{2})$,注意第二个条件中$x$和$y$可以交换。加边的时候注意维持一下$DAG$的形态,可以把$x$和$y$到$x_{1}$的距离小的向距离大的连边。
时间复杂度$O(nlogn)$,堆优化dij是瓶颈。
感觉写得很长。
Code:
#include <cstdio>
#include <cstring>
#include <queue>
#include <iostream>
using namespace std;
typedef pair <int, int> pin; const int N = ;
const int M = 3e6 + ;
const int inf = 0x3f3f3f3f; int n, m, inx[M], iny[M], inv[M], deg[N], f[N], ans = ;
int c1, c2, c3, c4, tot = , head[N], dis[N], d[][N];
bool vis[N]; struct Edge {
int to, nxt, val;
} e[M << ]; inline void add(int from, int to, int val) {
e[++tot].to = to;
e[tot].val = val;
e[tot].nxt = head[from];
head[from] = tot;
} inline void read(int &X) {
X = ; char ch = ; int op = ;
for(; ch > ''|| ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} inline void swap(int &x, int &y) {
int t = x; x = y; y = t;
} priority_queue <pin> Q;
void dij(int st) {
memset(dis, 0x3f, sizeof(dis));
memset(vis, , sizeof(vis));
Q.push(pin(dis[st] = , st));
for(; !Q.empty(); ) {
int x = Q.top().second; Q.pop();
if(vis[x]) continue;
vis[x] = ;
for(int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
if(dis[y] > dis[x] + e[i].val) {
dis[y] = dis[x] + e[i].val;
Q.push(pin(-dis[y], y));
}
}
}
} inline void chkMax(int &x, int y) {
if(y > x) x = y;
} int dfs(int x) {
if(vis[x]) return f[x];
vis[x] = ;
int res = ;
for(int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
chkMax(res, dfs(y) + e[i].val);
}
return f[x] = res;
} int main() {
read(n), read(m), read(c1), read(c2), read(c3), read(c4);
for(int i = ; i <= m; i++) {
read(inx[i]), read(iny[i]), read(inv[i]);
add(inx[i], iny[i], inv[i]), add(iny[i], inx[i], inv[i]);
} dij(c1); memcpy(d[], dis, sizeof(d[]));
dij(c2); memcpy(d[], dis, sizeof(d[]));
dij(c3); memcpy(d[], dis, sizeof(d[]));
dij(c4); memcpy(d[], dis, sizeof(d[])); /* for(int i = 1; i <= n; i++)
printf("%d ", d[0][i]);
printf("\n");
for(int i = 1; i <= n; i++)
printf("%d ", d[1][i]);
printf("\n");
for(int i = 1; i <= n; i++)
printf("%d ", d[2][i]);
printf("\n");
for(int i = 1; i <= n; i++)
printf("%d ", d[3][i]);
printf("\n"); */ tot = ; memset(head, , sizeof(head));
for(int i = ; i <= m; i++) {
int x = inx[i], y = iny[i], v = inv[i];
if(d[][x] + v + d[][y] == d[][c2])
if(d[][y] + v + d[][x] == d[][c4] || d[][x] + v + d[][y] == d[][c4]) {
if(d[][x] < d[][y]) {
add(x, y, v);
deg[y]++;
} else {
add(y, x, v);
deg[x]++;
}
} swap(x, y);
if(d[][x] + v + d[][y] == d[][c2])
if(d[][y] + v + d[][x] == d[][c4] || d[][x] + v + d[][y] == d[][c4]) {
if(d[][x] < d[][y]) {
add(x, y, v);
deg[y]++;
} else {
add(y, x, v);
deg[x]++;
}
}
} memset(vis, , sizeof(vis));
for(int i = ; i <= n; i++)
if(deg[i] == && !vis[i]) dfs(i); /* for(int i = 1; i <= n; i++)
printf("%d ", f[i]);
printf("\n"); */ for(int i = ; i <= n; i++)
chkMax(ans, f[i]); printf("%d\n", ans);
return ;
}
Luogu 2149 [SDOI2009]Elaxia的路线的更多相关文章
- Luogu P2149 [SDOI2009]Elaxia的路线(最短路+记忆化搜索)
P2149 [SDOI2009]Elaxia的路线 题意 题目描述 最近,\(Elaxia\)和\(w**\)的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们必须合理地安排两个人在一起的 ...
- 洛谷 2149 [SDOI2009]Elaxia的路线
题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的 ...
- BZOJ1880或洛谷2149 [SDOI2009]Elaxia的路线
BZOJ原题链接 洛谷原题链接 显然最长公共路径是最短路上的一条链. 我们可以把最短路经过的边看成有向边,那么组成的图就是一张\(DAG\),这样题目要求的即是两张\(DAG\)重合部分中的最长链. ...
- Luogu P2149 [SDOI2009]Elaxia的路线 | 图论
题目链接 题解: 题面中给了最简洁清晰的题目描述:"求无向图中,两对点间最短路的最长公共路径". 对于这个问题我们可以先考虑图中的哪些边对这两对点的最短路产生了贡献. 比如说下面这 ...
- BZOJ 1880: [Sdoi2009]Elaxia的路线( 最短路 + dp )
找出同时在他们最短路上的边(dijkstra + dfs), 组成新图, 新图DAG的最长路就是答案...因为两人走同一条路但是不同方向也可以, 所以要把一种一个的s,t换一下再更新一次答案 ---- ...
- 【BZOJ1880】[Sdoi2009]Elaxia的路线(最短路)
[BZOJ1880][Sdoi2009]Elaxia的路线(最短路) 题面 BZOJ 洛谷 题解 假装我们知道了任意两点间的最短路,那么我们怎么求解答案呢? 不难发现公共路径一定是一段连续的路径(如果 ...
- 洛谷 P2149 [SDOI2009]Elaxia的路线 解题报告
P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia ...
- 【BZOJ 1880】 [Sdoi2009]Elaxia的路线 (最短路树)
1880: [Sdoi2009]Elaxia的路线 Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. ...
- BZOJ1880: [Sdoi2009]Elaxia的路线(最短路)
1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 2049 Solved: 805 题目链接:https ...
随机推荐
- C#文件操作常用相关类(Directory类、File类、Path类)
1.文件操作常用相关类 1)File //操作文件,静态类,对文件整体操作.拷贝.删除.剪切等 2)Directory //操作目录(文件夹),静态类 3)DirectoryInfo //文件夹的一个 ...
- 是因为Session只能让服务器在一次连续的会话中记住你,而Cookie是记住浏览器一段时间
Cookie的作用 因为http协议先天不足是无记忆性. 还有一个区别是:Session是服务器端保存会话状态的机制. 而Cookie则是浏览器端保存会话的机制. Cookie 的应用
- grunt-2x2x
a grunt plugin to resize and rename @2x.png(jpg,gif,) image to .png(jpg,gif) 场景:移动前端开发中,设计给的psd都是双倍图 ...
- Python函数-all()
all(iterable) 作用: 如果iterable的所有元素不为0.''.False或者iterable为空,all(iterable)返回True,否则返回False:函数等价于: def a ...
- 在系统学习javaEE开发的颠覆者Springboot时遇到的localhost无法访问的问题
就是新建了一个Springboot项目,但是无法正常访问. 关闭防火墙试了,mvn方式启动试了,换端口试了.然后用Tomcat的start.bat测试发现localhost是可以访问的. 上网找到各种 ...
- 第五篇 Nginx的简单配置
先安装: sudo apt-get install nginx php5-fpm 我是在新安装的Ubuntu13上测试通过的,真的只安装这两个东西就够了. 然后编辑配置文件. sudo gedit / ...
- (转)C#正则表达式Regex类的用法
原文地址如下:http://www.studyofnet.com/news/297.html 一.C#正则表达式符号模式 字 符 描 述 \ 转义字符,将一个具有特殊功能的字符转义为一个普通字符,或反 ...
- 安装成功的nginx如何添加未编译模块?
在重启nginx后发生了错误,错误如下: nginx: [emerg] the "ssl" parameter requires ngx_http_ssl_module in /u ...
- 升级 AngularJS 至 Angular
Victor Savkin 大神撰写了一系列文章详细介绍如何升级 AngularJS 应用: NgUpgrade in Depth Upgrade Shell Two Approaches to Up ...
- web编程的初步认识
一直以后, 只知道打开浏览器, 输入网址便可以上网浏览网页, 但是当认真琢磨起这web编程的时候, 对于很多细节却是感觉很迷惑, 在慢慢的学习中, 才逐渐有了些了解. web有client/serve ...