poj 3729 Facer’s string
| Time Limit: 3000MS | Memory Limit: 65536K | |
| Total Submissions: 2155 | Accepted: 644 |
Description
Minifacer was very happy these days because he has learned the algorithm of KMP recently. Yet his elder brother, Hugefacer, thought that Minifacer needs a deeper understanding of this algorithm. Thus Hugefacer decided to play a game with his little brother to enhance his skills.
First, Hugefacer wrote down two strings S1 and S2. Then Minifacer tried to find a substring S3 of S1 which meets the following requirements: 1) S3 should have a length of k (which is a constant value); 2) S3 should also be the substring of S2. After several rounds, Hugefacer found that this game was too easy for his clever little brother, so he added another requirement: 3) the extended string of S3 should NOT be the substring of S2. Here the extended string of S3 is defined as S3 plus its succeed character in S1 (if S3 does not have a succeed character in S1, the extended string of S3 is S3 + ' ' which will never appear in S2). For example, let S1 be "ababc", if we select the substring from the first character to the second character as S3 (so S3 equals "ab"), its extended string should be "aba"; if we select the substring from the third character to the fourth character as S3, its extended string should be "abc"; if we select the substring from the fourth character to the fifth character as S3, its extended string should be "bc".
Since the difficult level of the game has been greatly increased after the third requirement was added, Minifacer was not able to win the game and he thought that maybe none of the substring would meet all the requirements. In order to prove that Minifacer was wrong, Hugefacer would like to write a program to compute number of substrings that meet the three demands (Note that two strings with same appearance but different positions in original string S1 should be count twice). Since Hugefacer do not like characters, he will use non-negative integers (range from 0 to 10000) instead.
Input
There are multiple test cases. Each case contains three lines: the first line contains three integers n, m and k where n represents the length of S1, m represents the length of S2 and k represents the length of substring; the second line contains string S1 and the third line contains string S2. Here 0 ≤ n, m ≤ 50000. Input ends with EOF.
Output
For each test case, output a number in a line stand for the total number of substrings that meet the three requirements.
Sample Input
5 5 2
1 2 1 2 3
1 2 3 4 5
5 5 3
1 2 1 2 3
1 2 3 4 5
Sample Output
2
1 题意:有两个字符串s1,s2,现在要从s1中找到子串s3,其长度必须大于等于K,使得s3也是s2的子串,并且s3再加上s1中的一个后继字符后不再是s2的子串,问满足条件的s3的数量。
思路:求出后缀数组和高度数组,那么对于s1中每一个后缀,判断这个后缀和s2中的任意一个后缀的lcp是否等于K。可以换个角度考虑这个问题,在lcp数组中,把数值大于等于K的连续的几个后缀的lcp当成一块来考虑,
如果这个块中s1,s2中的后缀都有,说明这些后缀当中的任意两个后缀的lcp都是大于等于K的,这样把lcp数组分成一块一块来考虑就能很快求出A中所有后缀和B中后缀的lcp大于等于K的数量,正好等于K的数量就是
sum(K)-sum(K+1)
AC代码:
#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<algorithm>
#include<vector>
#include<cstring>
#include<string>
#include<cmath>
using namespace std;
const int INF = 0x3f3f3f3f;
const int N_MAX = + ;
typedef long long ll;
int n, N,M, k, K;
int Rank[N_MAX * ];
int tmp[N_MAX * ];
int sa[N_MAX * ];
int lcp[N_MAX * ];
int s[N_MAX * ];
bool compare_sa(const int& i, const int& j) {
if (Rank[i] != Rank[j])return Rank[i] < Rank[j];
else {
int ri = i + k <= n ? Rank[i + k] : -;
int rj = j + k <= n ? Rank[j + k] : -;
return ri < rj;
}
} void construct_sa(const int *S, int *sa) {
for (int i = ; i <= n; i++) {
sa[i] = i;
Rank[i] = i < n ? S[i] : -;
}
for (k = ; k <= n; k *= ) {
sort(sa, sa + n + , compare_sa);
tmp[sa[]] = ;
for (int i = ; i <= n; i++) {
tmp[sa[i]] = tmp[sa[i - ]] + (compare_sa(sa[i - ], sa[i]) ? : );
}
for (int i = ; i <= n; i++) {
Rank[i] = tmp[i];
}
}
}
void construct_lcp(const int *S, int *sa, int *lcp) {
memset(lcp, , sizeof(lcp));
for (int i = ; i <= n; i++)Rank[sa[i]] = i;
int h = ;
lcp[] = ;
for (int i = ; i < n; i++) {
int j = sa[Rank[i] - ];
if (h > )h--;
for (; j + h < n&&i + h < n; h++) {
if (S[j + h] != S[i + h])break;
}
lcp[Rank[i] - ] = h;
}
} ll find_num(int K) {
int A = , B = ;
ll res = ;
for (int i = ; i < n;i++) {
if (lcp[i] < K) {
if (B > )res += A;
A = ; B = ;
}
if (sa[i + ] < N)A++;
if (sa[i + ] > N) B++;
}
return res;
} int main() {
while (scanf("%d%d%d", &N, &M, &K) != EOF) {
for (int i = ; i < N; i++) {
scanf("%d", &s[i]);
s[i]++;
}
s[N] = '$';
for (int i = N + ; i < N + M + ; i++) {
scanf("%d", &s[i]);
s[i]++;
}
n = N + M + ;
s[n] = ;
construct_sa(s, sa);
construct_lcp(s, sa, lcp);
printf("%lld\n",find_num(K)-find_num(K+));
}
return ;
}
poj 3729 Facer’s string的更多相关文章
- POJ3729 Facer’s string 后缀数组
Fa ...
- HDU 3260/POJ 3827 Facer is learning to swim(DP+搜索)(2009 Asia Ningbo Regional)
Description Facer is addicted to a game called "Tidy is learning to swim". But he finds it ...
- POJ 2887:Big String(分块)
http://poj.org/problem?id=2887 题意:给出一个字符串,还有n个询问,第一种询问是给出一个位置p和字符c,要在位置p的前面插入c(如果p超过字符串长度,自动插在最后),第二 ...
- POJ 3336 Count the string (KMP+DP,好题)
参考连接: KMP+DP: http://www.cnblogs.com/yuelingzhi/archive/2011/08/03/2126346.html 另外给出一个没用dp做的:http:// ...
- POJ - 3541 - Given a string…
Given a string… Time Limit: 10000MS Memory Limit: 65536K Total Submissions: 1819 Accepted: 390 C ...
- poj 2155 matrix 二维线段树 线段树套线段树
题意 一个$n*n$矩阵,初始全为0,每次翻转一个子矩阵,然后单点查找 题解 任意一种能维护二维平面的数据结构都可以 我这里写的是二维线段树,因为四分树的写法复杂度可能会退化,因此考虑用树套树实现二维 ...
- POJ 3376 Finding Palindromes EX-KMP+字典树
题意: 给你n个串串,每个串串可以选择和n个字符串拼接(可以自己和自己拼接),问有多少个拼接后的字符串是回文. 所有的串串长度不超过2e6: 题解: 这题由于是在POJ上,所以string也用不了,会 ...
- (转)ACM next_permutation函数
转自 stven_king的博客 这是一个求一个排序的下一个排列的函数,可以遍历全排列,要包含头文件<algorithm>下面是以前的笔记 (1) int 类型的next_permuta ...
- next_permutation函数
这是一个求一个排序的下一个排列的函数,可以遍历全排列,要包含头文件<algorithm>下面是以前的笔记 与之完全相反的函数还有prev_permutation (1) int 类 ...
随机推荐
- tp5.0初入
1.目录结构 |-application 应用目录 是整个网站的核心 |---|---index 前台目录 |---|-----|---controller 控制器 |---|-----|---mod ...
- Linux基本的指令操作
绝对路径: 路径的写法,由根目录/写起,例如:/usr/share/doc这个目录. 相对路径: 路径的写法,不由/写起,例如由/usr/share/doc要到/usr/share/man底下时,可以 ...
- 准备篇(三)Makefile
Makefile 也是蛮多的, 嵌入式的Makefile也是很重要的,所以单独开一个分支.
- 吴恩达DeepLearning 第一课第四周随笔
第四周 4.1深度神经网络符号约定 L=4______(神经网络层数) 4.2 校正矩阵的维数 校正要点:,, dZ,dA,dW,db都与它们被导数(Z,A,W,b)的维数相同 4.3 为什么使用 ...
- dialog BLE SDK 学习(3)
dialog DA14580 SDK版本:5.0.4. 本文介绍了DA14580 SDK的学习感想和建议,分享给大家. 首先,Dialog官网上的资料挺全的,但是是英文的,如果英文不好,比如笔者,阅读 ...
- Java语言基础---两变量间的交换
使用中间变量交换两个变量的值 int a = 10 , b = 11 , m; m = a; a = b; b = m; 不使用中间变量交换两个变量的值 int a = 10; int b = 11; ...
- 3336 /P1948电话网络(二分答案)
3336 电话网络 时间限制: 1 s 空间限制: 32000 KB 题目等级 : 黄金 Gold 题目描述 Description 由于地震使得连接汶川县城电话线全部损坏,假如你是 ...
- 如何将多个Eclipse项目导入IntelliJ IDEA
技术交流群:233513714 IntelliJ IDEA 与Eclipse在新建项目上的叫法略有不同,区别见下图. 当我们使用idea后再次使用eclipse时就会有很多不适,下面介绍一个多项目的导 ...
- Android学习记录(9)—Android之Matrix的用法
Matrix ,中文里叫矩阵,高等数学里有介绍,在图像处理方面,主要是用于平面的缩放.平移.旋转等操作. 首先介绍一下矩阵运算.加法和减法就不用说了,对应位相加就好.图像处理,主要用到的是乘法 .下面 ...
- SDWebImage实现原理(怎么实现图片缓存器)
入口 setImageWithURL:placeholderImage:options: 会先把 placeholderImage 显示,然后 SDWebImageManager 根据 URL 开始处 ...