poj 3729 Facer’s string
| Time Limit: 3000MS | Memory Limit: 65536K | |
| Total Submissions: 2155 | Accepted: 644 |
Description
Minifacer was very happy these days because he has learned the algorithm of KMP recently. Yet his elder brother, Hugefacer, thought that Minifacer needs a deeper understanding of this algorithm. Thus Hugefacer decided to play a game with his little brother to enhance his skills.
First, Hugefacer wrote down two strings S1 and S2. Then Minifacer tried to find a substring S3 of S1 which meets the following requirements: 1) S3 should have a length of k (which is a constant value); 2) S3 should also be the substring of S2. After several rounds, Hugefacer found that this game was too easy for his clever little brother, so he added another requirement: 3) the extended string of S3 should NOT be the substring of S2. Here the extended string of S3 is defined as S3 plus its succeed character in S1 (if S3 does not have a succeed character in S1, the extended string of S3 is S3 + ' ' which will never appear in S2). For example, let S1 be "ababc", if we select the substring from the first character to the second character as S3 (so S3 equals "ab"), its extended string should be "aba"; if we select the substring from the third character to the fourth character as S3, its extended string should be "abc"; if we select the substring from the fourth character to the fifth character as S3, its extended string should be "bc".
Since the difficult level of the game has been greatly increased after the third requirement was added, Minifacer was not able to win the game and he thought that maybe none of the substring would meet all the requirements. In order to prove that Minifacer was wrong, Hugefacer would like to write a program to compute number of substrings that meet the three demands (Note that two strings with same appearance but different positions in original string S1 should be count twice). Since Hugefacer do not like characters, he will use non-negative integers (range from 0 to 10000) instead.
Input
There are multiple test cases. Each case contains three lines: the first line contains three integers n, m and k where n represents the length of S1, m represents the length of S2 and k represents the length of substring; the second line contains string S1 and the third line contains string S2. Here 0 ≤ n, m ≤ 50000. Input ends with EOF.
Output
For each test case, output a number in a line stand for the total number of substrings that meet the three requirements.
Sample Input
5 5 2
1 2 1 2 3
1 2 3 4 5
5 5 3
1 2 1 2 3
1 2 3 4 5
Sample Output
2
1 题意:有两个字符串s1,s2,现在要从s1中找到子串s3,其长度必须大于等于K,使得s3也是s2的子串,并且s3再加上s1中的一个后继字符后不再是s2的子串,问满足条件的s3的数量。
思路:求出后缀数组和高度数组,那么对于s1中每一个后缀,判断这个后缀和s2中的任意一个后缀的lcp是否等于K。可以换个角度考虑这个问题,在lcp数组中,把数值大于等于K的连续的几个后缀的lcp当成一块来考虑,
如果这个块中s1,s2中的后缀都有,说明这些后缀当中的任意两个后缀的lcp都是大于等于K的,这样把lcp数组分成一块一块来考虑就能很快求出A中所有后缀和B中后缀的lcp大于等于K的数量,正好等于K的数量就是
sum(K)-sum(K+1)
AC代码:
#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<algorithm>
#include<vector>
#include<cstring>
#include<string>
#include<cmath>
using namespace std;
const int INF = 0x3f3f3f3f;
const int N_MAX = + ;
typedef long long ll;
int n, N,M, k, K;
int Rank[N_MAX * ];
int tmp[N_MAX * ];
int sa[N_MAX * ];
int lcp[N_MAX * ];
int s[N_MAX * ];
bool compare_sa(const int& i, const int& j) {
if (Rank[i] != Rank[j])return Rank[i] < Rank[j];
else {
int ri = i + k <= n ? Rank[i + k] : -;
int rj = j + k <= n ? Rank[j + k] : -;
return ri < rj;
}
} void construct_sa(const int *S, int *sa) {
for (int i = ; i <= n; i++) {
sa[i] = i;
Rank[i] = i < n ? S[i] : -;
}
for (k = ; k <= n; k *= ) {
sort(sa, sa + n + , compare_sa);
tmp[sa[]] = ;
for (int i = ; i <= n; i++) {
tmp[sa[i]] = tmp[sa[i - ]] + (compare_sa(sa[i - ], sa[i]) ? : );
}
for (int i = ; i <= n; i++) {
Rank[i] = tmp[i];
}
}
}
void construct_lcp(const int *S, int *sa, int *lcp) {
memset(lcp, , sizeof(lcp));
for (int i = ; i <= n; i++)Rank[sa[i]] = i;
int h = ;
lcp[] = ;
for (int i = ; i < n; i++) {
int j = sa[Rank[i] - ];
if (h > )h--;
for (; j + h < n&&i + h < n; h++) {
if (S[j + h] != S[i + h])break;
}
lcp[Rank[i] - ] = h;
}
} ll find_num(int K) {
int A = , B = ;
ll res = ;
for (int i = ; i < n;i++) {
if (lcp[i] < K) {
if (B > )res += A;
A = ; B = ;
}
if (sa[i + ] < N)A++;
if (sa[i + ] > N) B++;
}
return res;
} int main() {
while (scanf("%d%d%d", &N, &M, &K) != EOF) {
for (int i = ; i < N; i++) {
scanf("%d", &s[i]);
s[i]++;
}
s[N] = '$';
for (int i = N + ; i < N + M + ; i++) {
scanf("%d", &s[i]);
s[i]++;
}
n = N + M + ;
s[n] = ;
construct_sa(s, sa);
construct_lcp(s, sa, lcp);
printf("%lld\n",find_num(K)-find_num(K+));
}
return ;
}
poj 3729 Facer’s string的更多相关文章
- POJ3729 Facer’s string 后缀数组
Fa ...
- HDU 3260/POJ 3827 Facer is learning to swim(DP+搜索)(2009 Asia Ningbo Regional)
Description Facer is addicted to a game called "Tidy is learning to swim". But he finds it ...
- POJ 2887:Big String(分块)
http://poj.org/problem?id=2887 题意:给出一个字符串,还有n个询问,第一种询问是给出一个位置p和字符c,要在位置p的前面插入c(如果p超过字符串长度,自动插在最后),第二 ...
- POJ 3336 Count the string (KMP+DP,好题)
参考连接: KMP+DP: http://www.cnblogs.com/yuelingzhi/archive/2011/08/03/2126346.html 另外给出一个没用dp做的:http:// ...
- POJ - 3541 - Given a string…
Given a string… Time Limit: 10000MS Memory Limit: 65536K Total Submissions: 1819 Accepted: 390 C ...
- poj 2155 matrix 二维线段树 线段树套线段树
题意 一个$n*n$矩阵,初始全为0,每次翻转一个子矩阵,然后单点查找 题解 任意一种能维护二维平面的数据结构都可以 我这里写的是二维线段树,因为四分树的写法复杂度可能会退化,因此考虑用树套树实现二维 ...
- POJ 3376 Finding Palindromes EX-KMP+字典树
题意: 给你n个串串,每个串串可以选择和n个字符串拼接(可以自己和自己拼接),问有多少个拼接后的字符串是回文. 所有的串串长度不超过2e6: 题解: 这题由于是在POJ上,所以string也用不了,会 ...
- (转)ACM next_permutation函数
转自 stven_king的博客 这是一个求一个排序的下一个排列的函数,可以遍历全排列,要包含头文件<algorithm>下面是以前的笔记 (1) int 类型的next_permuta ...
- next_permutation函数
这是一个求一个排序的下一个排列的函数,可以遍历全排列,要包含头文件<algorithm>下面是以前的笔记 与之完全相反的函数还有prev_permutation (1) int 类 ...
随机推荐
- 43_2.VUE学习之--不使用组件computed计算属性超简单的实现美团购物车原理
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- [BZOJ2243][SDOI2011]染色(树链剖分)
[传送门] 树链剖分就行了,注意线段树上颜色的合并 Code #include <cstdio> #include <algorithm> #define N 100010 # ...
- 调用startActivityForResult后直接调用onActivityResult
人员都知道,可以经由过程应用 startActivityForResult() 和 onActivityResult() 办法来传递或接管参数. 然而在"轻听"项目中,还没比及被调 ...
- 发送广播重新挂载SD卡,使图库可以及时显示自己保存的图片(无需手机重启)
我们或许经常会遇到这种情况,明明保存了图片,但是当你打开图片时,却没有找到这张图片,手机重启之后才能看到.这是因为SD卡并没有重新挂载,图库也无法把这张图片加载进去,解决这个问题非常简单,只需要我们模 ...
- Vbs 测试程序三
一段被写滥了的VBS代码 值得一提的是感兴趣的同学可以把 chr(13) + chr(13) + chr(13) 改为chr(11) + chr(11) + chr(11) 不赘述 on error ...
- USACO Section1.2 Transformations 解题报告
transform解题报告 —— icedream61 博客园(转载请注明出处)------------------------------------------------------------ ...
- 【Dual Support Vector Machine】林轩田机器学习技法
这节课内容介绍了SVM的核心. 首先,既然SVM都可以转化为二次规划问题了,为啥还有有Dual啥的呢?原因如下: 如果x进行non-linear transform后,二次规划算法需要面对的是d`+1 ...
- ironic-conductor与ipa交互clean部分代码分析
clean的动作会在provide和delete阶段才会触发 从代码分析: 对节点执行的node provide/deleted/clean会先发送到ironicclient ironicclient ...
- Ext JS表单Ext.form.FormPanel
1.表单 对于传统的b/s应用来说,数据录入元素是放在表单<form>标签里面的.而对于ExtJS应用来说,则可以直接使用FormPanel控件来存放表单中的元素.FormPanel继承自 ...
- GCC特性之__init修饰解析 - kasalyn的专栏 - 博客频道 - CSDN.NET
, GCC特性之__init修饰解析 - kasalyn的专栏 - 博客频道 - CSDN.NET.MathJax_Hover_Frame {border-radius: .25em; -webkit ...