佩尔方程x*x-d*y*y=1,当d不为完全平方数时,有无数个解,并且知道一个解可以推其他解。 如果d为完全平方数时,可知佩尔方程无解。

假设(x0,y0)是最小正整数解。

则:

xn=xn-1*x0+d*yn-1*y0

yn=xn-1*y0+yn-1*x0

证明只需代入。 如果忘记公式可以自己用(x0*x0-d*y0*y0)*(x1*x1-d*y1*y1)=1 推。

这样只要暴力求出最小特解,就可以用快速幂求出任意第K个解。

Street Numbers
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 2813   Accepted: 1568

Description

A computer programmer lives in a street with houses numbered consecutively (from 1) down one side of the street. Every evening she walks her dog by leaving her house and randomly turning left or right and walking to the end of the street and back. One night she adds up the street numbers of the houses she passes (excluding her own). The next time she walks the other way she repeats this and finds, to her astonishment, that the two sums are the same. Although this is determined in part by her house number and in part by the number of houses in the street, she nevertheless feels that this is a desirable property for her house to have and decides that all her subsequent houses should exhibit it. 
Write a program to find pairs of numbers that satisfy this condition. To start your list the first two pairs are: (house number, last number):

         6         8

35 49

Input

There is no input for this program.

Output

Output will consist of 10 lines each containing a pair of numbers, in increasing order with the last number, each printed right justified in a field of width 10 (as shown above).

Sample Input


Sample Output

         6         8
35 49

这题可以得到佩尔方程s*s-8*t*t=1 ,s=2n+1,t=x (n表示总长,x表示取的n中某个位置)

s0=3,t0=1 然后就很好弄了

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
using namespace std; int main(int argc, const char * argv[]) {
long long s0=;
long long t0=;
long long s1=;
long long t1=;
for(int i=;i<=;i++)
{
long long s,t;
s=s1*s0+*t1*t0;
t=t1*s0+t0*s1;
s1=s;
t1=t;
printf("%10lld%10lld\n",t,(s-)/);
//cout<<t<<" "<<(s-1)/2<<endl;
}
return ;
}

这题用暴力然后打表也是可以0MS过的。

Pell方程(求形如x*x-d*y*y=1的通解。)的更多相关文章

  1. Pell方程及其一般形式

    一.Pell方程 形如x^2-dy^2=1的不定方程叫做Pell方程,其中d为正整数,则易得当d是完全平方数的时候这方程无正整数解,所以下面讨论d不是完全平方数的情况. 设Pell方程的最小正整数解为 ...

  2. POJ 1320 Street Numbers Pell方程

    http://poj.org/problem?id=1320 题意很简单,有序列 1,2,3...(a-1),a,(a+1)...b  要使以a为分界的 前缀和 和 后缀和 相等 求a,b 因为序列很 ...

  3. POJ 2427 Smith's Problem Pell方程

    题目链接 :  http://poj.org/problem?id=2427 PELL方程几个学习的网址: http://mathworld.wolfram.com/PellEquation.html ...

  4. HDU 2281 Square Number Pell方程

    http://acm.hdu.edu.cn/showproblem.php?pid=2281 又是一道Pell方程 化简构造以后的Pell方程为 求出其前15个解,但这些解不一定满足等式,判断后只有5 ...

  5. HDU 6222 Heron and His Triangle (pell 方程)

    题面(本人翻译) A triangle is a Heron's triangle if it satisfies that the side lengths of it are consecutiv ...

  6. hdu3293(pell方程+快速幂)

    裸的pell方程. 然后加个快速幂. No more tricks, Mr Nanguo Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: ...

  7. hdu2281&&POJ1320——Pell方程

    hdu2281 输入一个 $N$,求最大的 $n$($n \leq N$)和 $x$,使得 $x^2 = \frac{1^2+2^2+...+n^2}{n}$. 分析: 将右边式子的分子求和化简,有: ...

  8. [NBUT 1224 Happiness Hotel 佩尔方程最小正整数解]连分数法解Pell方程

    题意:求方程x2-Dy2=1的最小正整数解 思路:用连分数法解佩尔方程,关键是找出√d的连分数表示的循环节.具体过程参见:http://m.blog.csdn.net/blog/wh2124335/8 ...

  9. Sympy解方程-求极限-微分-积分-矩阵运算

    简介 Sympy是一个Python的科学计算库,用一套强大的符号计算体系完成诸如多项式求值.求极限.解方程.求积分.微分方程.级数展开.矩阵运算等等计算问题.虽然Matlab的类似科学计算能力也很强大 ...

随机推荐

  1. 关于String的两种赋值方式

    String的两种赋值是不同的,String str1=“hello”,指向堆内存中的"hello",而String str2=new String("hello&quo ...

  2. 机器学习第2课:单变量线性回归(Linear Regression with One Variable)

    2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示: 我们将要用来描述这个回归问题的标记如下: m                代表训练集中实 ...

  3. ElasticSearch获取指定Field数据的Java方法

    ElasticSearch(ES)检索后需要结果时,可能通过source接口读出.但是这样的话,返回的结果会很多.在调用search方法时,我们可以添加addfield或addfields方法,仅仅读 ...

  4. TestNG+ReportNG+IDEA+Git+Jenkins+surefire持续集成数据驱动dubbo接口测试

    一.pom.xml增加testng相关配置 <!--添加插件 关联testNg.xml--><plugin> <groupId>org.apache.maven.p ...

  5. 又见The request sent by the client was syntactically incorrect ()

    前几天遇到过这个问题(Ref:http://www.cnblogs.com/xiandedanteng/p/4168609.html),问题在页面的组件name和和注解的@param名匹配不对,这个好 ...

  6. Solidworks 好的测试题模拟题

    题目:按照下图构建草图,注意设置必要的几何约束. 问题:   1.参照下图所示参数时请问其中绿色区域的面积为多少平方毫米?     题目:参照下图绘制草图轮廓,注意图中各线条之间均为相切过渡. 问题: ...

  7. h5+ 管理设备信息

    Device模块管理设备信息,用于获取手机设备的相关信息,如IMEI.IMSI.型号.厂商等.通过plus.device获取设备信息管理对象. 1.属性 1.1.imei: 设备的国际移动设备身份码, ...

  8. SecureCRT如何调整好看的黄色

    1.常规 →默认会话→编辑默认编辑→白黑 字体为console 2.全局选项 ANSI颜色有一个 把黄色 拖过去即可

  9. 微信java开发之实现微信主动推送消息

    1.拉取access_token2.拉取用户信息3.主动推送消息4.接口貌似要申请权限5.依赖httpclient4.2.3 和jackson 2.2.1 public class WeixinAPI ...

  10. .NET CORE 2.0小白笔记(五):配置的热更新、配置的框架设计

    配置的热更新 什么是热更新:一般来说,我们创建的项目都无法做到热更新:即项目无需重启,修改配置文件后读取到的信息就是修改配置之后的 我们只需要吧项目中用到的IOptions改成IOptionsSnap ...