UVA 1642 Magical GCD(gcd的性质,递推)
分析:对于区间[i,j],枚举j。
固定j以后,剩下的要比较M_gcd(k,j) = gcd(ak,...,aj)*(j-k+1)的大小, i≤k≤j。
此时M_gcd(k,j)可以看成一个二元组(g, k)。
根据gcd的性质gcd(a1,a2,...,an) = gcd(a1,gcd(a2,..,an)),而且gcd(a,b) | b。
如果gcd(ak,...,aj) != gcd(ak+1,...,aj),那么gcd(ak,...,aj) ≤ 2*gcd(ak+1,...,aj)。
原本有j个gcd,而不同的gcd值之间至少相差2倍,所以不同的gcd值的数量是O(log2j)。
gcd相同的只要保留最小的k。
把j-1对应的M_gcd的二元组保留成一个表tb。然后想想怎么递推j的表,
根据gcd(a1,a2,...,aj) = gcd(gcd(a1,..aj-1),aj),一部分是tbj.g = gcd(tbj-1.g,a[j]),下标没有改变,
另一部分是二元组(a[j],j)。一个有序序列依次和a[j]求gcd以后不一定有序了,去重复前还要排下序。
总的复杂度是O(nlogn*loglogn )
/*********************************************************
* --------------Crispr--------------- *
* author AbyssalFish *
**********************************************************/
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
//list<ll> gcd_tab;
//ll g_tb[64];
//int idx[64];
typedef pair<ll,int> pli;
pli tb[]; int sz; ll gcd(ll a,ll b)
{
ll t;
while(b){
t = b;
b = a%b;
a = t;
}
return a;
} //#define LOCAL
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
int T , n;
scanf("%d",&T);
ll a;
while(T--){
scanf("%d",&n);
sz = ;
ll ans = ; #define val first
#define idx second
for(int i = ; i < n; i++){
scanf("%lld",&a);
for(int j = ; j < sz; j++){
tb[j].val = gcd(tb[j].val,a);
}
tb[sz++] = pli(a,i-);
sort(tb,tb+sz);
int k = ;
for(int j = ; j < sz; j++){
if(tb[j].val != tb[k].val){
ans = max((i-tb[k].idx)*tb[k].val, ans);
if(++k != j) tb[k] = tb[j];
}
}
ans = max((i-tb[k].idx)*tb[k].val, ans);
sz = k+;
}
printf("%lld\n", ans);
}
return ;
}
UVA 1642 Magical GCD(gcd的性质,递推)的更多相关文章
- UVa 11077 Find the Permutations(置换+递推)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35431 [思路] 置换+递推 将一个排列看作一个置换,分解为k个循 ...
- UVA 1213 - Sum of Different Primes(递推)
类似一个背包问题的计数问题.(虽然我也不记得这叫什么背包了 一开始我想的状态定义是:f[n = 和为n][k 个素数]. 递推式呼之欲出: f[n][k] = sigma f[n-pi][k-1]. ...
- UVa 1642 - Magical GCD(数论)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA - 1642 Magical GCD 数学
Magical GCD The Magical GCD of a nonempty sequence of positive integer ...
- uva 1642 Magical GCD
很经典的题目,愣是没做出来.. 题意:给出一个序列,求一子序列,满足其GCD(子序列)* length(子序列)最大. 题解: 类似单调队列的思想,每次将前面所得的最大公约数与当前数进行GCD,若GC ...
- UVA 1642 Magical GCD(经典gcd)
题意:给你n(n<=100000)个正整数,求一个连续子序列使序列的所有元素的最大公约数与个数乘积最大 题解:我们知道一个原理就是对于n+1个数与n个数的最大公约数要么相等,要么减小并且减小至少 ...
- UVa 1642 Magical GCD (暴力+数论)
题意:给出一个长度在 100 000 以内的正整数序列,大小不超过 10^ 12.求一个连续子序列,使得在所有的连续子序列中, 它们的GCD值乘以它们的长度最大. 析:暴力枚举右端点,然后在枚举左端点 ...
- uva 11426 线性欧拉函数筛选+递推
Problem J GCD Extreme (II) Input: Standard Input Output: Standard Output Given the value of N, you w ...
- UVA 550 Multiplying by Rotation (简单递推)
题意:有些数字是可以这样的:abcd*k=dabc,例如179487 * 4 = 717948,仅仅将尾数7移动到前面,其他都不用改变位置及大小.这里会给出3个数字b.d.k,分别代表b进制.尾数.第 ...
随机推荐
- 51nod 1354【DP】
(我一定是A了一题假DP) 给定序列a[0],a[1],a[2],...,a[n-1] 和一个整数K时, 有多少子序列所有元素乘起来恰好等于K. K<=1e8; 思路: 感觉 k 的 约数是突破 ...
- thinkphp5.1使用支付宝接口(沙箱环境)
接口文件以及沙箱的测试账号可以去支付宝开发中心获取,下面给出一个简单地例子 我新建了一个控制器Pay用来专门做支付 <?phpnamespace app\index\controller; us ...
- Java中的生产者和消费者实例(多线程 等待唤醒机制)
1.什么是等待唤醒 我们实现的效果 创建生产者和消费者 对服装进行生产 和售卖 实现生产一个就消费一个 来观察线程的各种状态 下面是用到的方法: wait()方法:让一个线程进行等待 另外一个线程 ...
- 谈缓存数据库在web开发中的重要性
1.开局先抛出如下问题: ①当关系型数据库存放的数据量很大时,每次查询耗时明显变长,那么如何解决该问题? ②当业务要求单用户登录(即同一个账户有一个用户登录后,第二个用户再登录该账户要么挤出之前的登录 ...
- 阿里巴巴Java开发手册_不建议在循环体中使用+进行字符串拼接
18. [推荐]循环体内,字符串的连接方式,使用StringBuilder的append方法进行扩展. 说明:下例中,反编译出的字节码文件显示每次循环都会new出一个StringBuilder对象,然 ...
- 才知道 Windows Live Writer Source Code plugin for SyntaxHighlighter 更新到2.0了
这是我用 Windows Live Writer 发布的第一篇文章! 在官方网站看到 Windows Live Writer Source Code plugin for SyntaxHighligh ...
- 牛客网练习赛26B(简单的dp)
题目链接:https://www.nowcoder.com/acm/contest/180/B 链接:https://www.nowcoder.com/acm/contest/180/B来源:牛客网 ...
- Hive 基本语法操练(二):视图和索引操作
1. 视图操作 ------- 1) 创建一个测试表. ``` hive> create table test(id int,name string); OK Time taken: 0.385 ...
- Nodejs mysql pool使用实例
前段时间在写一个版本发布工具,用到express+mysql实现,当站点运行很长一段空白时间后,node进程会自动down掉,提示mysql连接错误,谷歌后发现是mysql自身的特性导致,因此后来改为 ...
- mysql sql语句集锦
1.说明:创建数据库 CREATE DATABASE database-name 2.说明:删除数据库 drop database dbname 3.说明:备份sql server --- 创建 备份 ...