时间复杂度的计算

  1. 计算最坏情况下执行语句的次数(含有n)
  2. 去掉常数项, 只保留最高项, 去掉系数
  3. 最后的结果一般是1, logn, n, nlogn, n^2, 2^n, n!, n^n
  4. 时间复杂度所消耗的时间的顺序是: O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) <O(2^n) < O(n!) <O(n^n)

使用线性表实现多项式加法

  1. 使用顺序表, 下标表示幂数, 对应下标中内容为系数
  2. 使用链表, 在每一个节点中存放系数和幂数

Josephus游戏解法

  • 问题描述:
  • 设有n个人围坐在一个圆桌周围,现从第s个人开始报数,数到第m的人出列,然后从出列
  • 的下一个人重新开始报数,数到第m的人又出列...如此反复直到所有的人全部出列为止。
  • 问题:对于任意给定的n,s和m,求出按出列次序得到的n个人员的序列。

  • 思路
    • 使用while(size > 0)
  1. 使用循环链表实现
  2. 使用队列实现

表达式求解

  1. 一个运算数栈A
  2. 一个运算符栈B
  3. 每次将运算符压栈时, 判断栈顶的运算符的优先级, 如果比当前的高, 则A弹出两个数, B弹出栈顶元素, 将计算的结果压入到A中

循环队列的实现

使用两个指针, 头指针head, 尾指针tail, head指针指向队首, tail指向可以插入元素的位置, 当出队列几个元素之后, 剩下的部分有满了, 则再次入队元素时就会将从队首开始数, 直到找到一个空闲的位置

字符串的匹配

  • 朴素匹配: 俗称暴力匹配
  • KMP匹配: 首先根据需要去匹配的字符串构建一个next表, 对其每一个字串计算出他对象的最长的前缀和后缀(要求前缀和后缀一致), 没有为0, 长度为1记为1, 在匹配的过程中, 遇到了不匹配的字符, 字符串移动的步数是不匹配的字符之前的长度减去当前不必配字符在next数组中对应的值, 就这样知道匹配
  • 还是看不懂 ----> next的由来
    如何根据next中的值进行排序

树的表示(如果不是二叉树, 则在每一个节点记录其子节点的个数, 为0表示叶子节点)

  1. 双亲表示法: DataType data; int parent; // 保存parent的位置, 该结构体也是存储在一个顺序表中的
  2. 孩子表示法: 将所有的节点存放在一个线性表中, 在每一个线性表中有一个指针指向一个链表, 链表中存放的是该节点的所有的孩子在顺序表中的位置
  3. 孩子兄弟表示法: DataType data; TreeNode firstChild; TreeNode sibiling; // 类似于二叉树中的left与right的表示

二叉树的存储结构

  1. 顺序表存储, 不要第一个小标, 从1下标开始, index / 2得到的就是双亲的位置
  2. 链式结构: left, right, data

二叉树的相关概念

  1. 一个节点的度为由该节点向下引出的树枝

哈夫曼树

  1. 每一个结点都有权值, W1, W2, W3..., WPL值是每一个叶子节结点的路径长度与该叶子结点权重乘积之和
  2. 在构建Huffman树时, 要保证构建的树的WPL值最小
  • 常称WPL最小的二叉树为最优二叉树

哈夫曼树在编码中的应用

  • 每一个叶子结点的值为对应的ACSII字符在文章中出现的次数
  • 对于路径, 左分支为0, 右分支为1
  • 每一个字符对应的编码由一个int类型的数组组成. 在一个类似字典的数据结构中映射字符与HuffmanCode

图的存储结构

  • 邻接矩阵: 缺点是存储不了权重, 时间复杂度为O(n^2)
  • 邻接表: 存储的方式类似于树的孩子表示法, 时间复杂度为O(n + e)

图的遍历

  • DFS: 递归实现, 虽然书上在进行DFS时, 节点的选择是随机的, 但是在实现的时候可以按照0, 1, 2...递增来选择路径, 同时还要标记已经遍历过的结点
  • BFS: 队列实现, 广度优先遍历就是一层一层的遍历

补充

  • 如果需要遍历的图不是连通图, 那个在进行了一个连通分量的遍历之后, 需要从没有访问过的一个结点开始再一次进行DFS或者BFS

最小生成树算法

  • DFS生成
  • BFS生成
  • Kruskal: 一开始时没有一条边的图, 接着往图里面添加边(对边进行升序排序, 找最小的边)
  • Prime: 根据已经的结点和还没有添加到图中的结点添加边

最小生成树的应用

  • 城市之间的造价总体最小, 使用最小生成树

Datastructure的更多相关文章

  1. 【DataStructure In Python】Python实现各种排序算法

    使用Python实现直接插入排序.希尔排序.简单选择排序.冒泡排序.快速排序.归并排序.基数排序. #! /usr/bin/env python # DataStructure Sort # Inse ...

  2. 【DataStructure In Python】Python模拟栈和队列

    用Python模拟栈和队列主要是利用List,当然也可以使用collection的deque.以下内容为栈: #! /usr/bin/env python # DataStructure Stack ...

  3. 【DataStructure In Python】Python模拟链表

    最近一直在学习Python和Perl这两门语言,两者共同点很多,也有不多.希望通过这样的模拟练习可以让自己更熟悉语言,虽然很多时候觉得这样用Python或者Perl并没有体现这两者的真正价值. #! ...

  4. PAT Mooc datastructure 6-1

    Saving James Bond - Hard Version This time let us consider the situation in the movie "Live and ...

  5. PAT mooc DataStructure 4-2 SetCollection

    数据结构习题集-4-2 集合的运用 1.题目: We have a network of computers and a list of bi-directional connections. Eac ...

  6. PAT MOOC dataStructure 4-1

    数据结构练习 4-1 AVL 树 1. 题目: Input Specification: Each input file contains one test case. For each case, ...

  7. DataStructure 排序 源码实现

    本篇博客实现了 1.冒泡排序 2.冒泡排序的一种优化(当某次冒泡没有进行交换时,退出循环) 3.选择排序 4.归并排序 5.快速排序. 主要是源码的实现,并将自己在敲的过程中所遇到的一些问题记录下来. ...

  8. DataStructure——红黑树学习笔记

    1.前言 本文伪码和解释参考: http://blog.csdn.net/v_JULY_v/article/details/6105630 C实现的源码本文未贴出,请见: http://blog.cs ...

  9. 数据结构(DataStructure)与算法(Algorithm)、STL应用

    catalogue . 引论 . 数据结构的概念 . 逻辑结构实例 2.1 堆栈 2.2 队列 2.3 树形结构 二叉树 . 物理结构实例 3.1 链表 单向线性链表 单向循环链表 双向线性链表 双向 ...

  10. Fundamental Datastructure

    11988 - Broken Keyboard (a.k.a. Beiju Text) 可以用deque来模拟. #include <iostream> #include <stri ...

随机推荐

  1. Gazebo学习随记1 Gazebo概览

    Gazebo组件 World 世界 包含模拟中所有的元素如机器人,灯光,传感器等等 使用SDF(模拟描述格式)格式化 [用XML语言描述] 拓展名.world Model 模型 只包含一个<mo ...

  2. 浅谈UBUNTU

    一 UBUNTU介绍 Ubuntu(乌班图)是一个以桌面应用为主的Linux操作系统,其名称来自非洲南部祖鲁语或豪萨语的"ubuntu"一词,意思是"人性".& ...

  3. 「BZOJ 1791」「IOI 2008」Island「基环树」

    题意 求基环树森林所有基环树的直径之和 题解 考虑的一个基环树的直径,只会有两种情况,第一种是某个环上结点子树的直径,第二种是从两个环上结点子树内的最深路径,加上环上这两个结点之间的较长路径. 那就找 ...

  4. 高产的母猪之 python __init__全解

    python  __init__.py python 识别是不是一个模块的标准是目录下有无 __init__.py 模糊导入 模糊导入中的*中的模块是由__all__来定义的,__init__.py的 ...

  5. git commit失败

    1.使用命令  git rm test.txt 删除版本库中文件, 下一步:git commit 提交 出现如图: 这是因为没有同时提交信息,即:git commit -m "这里是信息&q ...

  6. winform只能打开一个子窗口

    源地址:https://zhidao.baidu.com/question/1511266887807047660.html 指定弹出的子窗口为模态窗口就可以了,这样在子窗口没有关闭前,是不能操作父窗 ...

  7. bootstrap添加模态窗后,再弹出消息提示框后,原先的滚动条消失

    设置需要滚动的模态框 overflow :scroll

  8. Spark大数据处理 之 RDD粗粒度转换的威力

    在从WordCount看Spark大数据处理的核心机制(2)中我们看到Spark为了支持迭代和交互式数据挖掘,而明确提出了内存中可重用的数据集RDD.RDD的只读特性,再加上粗粒度转换操作形成的Lin ...

  9. 【模板】割点(割顶) Tarjan

    题目背景 割点 题目描述 给出一个nnn个点,mmm条边的无向图,求图的割点. 输入输出格式 输入格式: 第一行输入n,mn,mn,m 下面mmm行每行输入x,yx,yx,y表示xxx到yyy有一条边 ...

  10. 用异或运算交换两个整数实现swap函数功能

    对于异或运算有这如下说明: 1^1=0 0^0=0 1^0=1 0^1=1 简单理解就是当两个书相同时结果为0,而两个数不同时异或的结果为1 可用于两个整数的交换,而不用去引入一个中间变量 #incl ...