Sobel边缘检测
Sobel算子:[-1 0 1
-2 0 2
-1 0 1]
用此算子与原图像做卷积,可以检测出垂直方向的边缘。算子作用在图像的第二列,结果是:200,200,200;作用在第三列,结果是:
200,200,200;
对当前列左右两侧的元素进行差分,由于边缘的值明显小于(或大于)周边像素,所以边缘的差分结果会明显不同,这样就提取出了垂直边缘。同理,把上面那个矩阵转置一下,就是提取水平边缘。这种差分操作就称为图像的梯度计算。
图像梯度
概念: 把图片想象成连续函数,因为边缘部分的像素值是与旁边像素明显有区别的,所以对图片局部求极值,就可以得到整幅图片的边缘信息了。不过图片是二维的离散函数,导数就变成了差分,这个差分就称为图像的梯度。
理解:求一阶差分应该是指对图像相邻像素求取差分。
边缘 – 是像素值发生跃迁的地方(变化率最大处,导数最大处),是图像的显著特征之一,在图像特征提取、对象检测、模式识别等方面都有重要的作用。
Sobel算子和Scharr算子
(1)Sobel算子:是离散微分算子(discrete differentiation operator),用来计算图像灰度的近似梯度,梯度越大越有可能是边缘。
Soble算子的功能集合了高斯平滑和微分求导,又被称为一阶微分算子,求导算子,在水平和垂直两个方向上求导,得到的是图像在X方法与Y方向梯度图像。
缺点:比较敏感,容易受影响,要通过高斯模糊(平滑)来降噪。
算子是通过权重不同来扩大差异。
梯度计算:(在两个方向求导,假设被作用图像为 I)
水平变化: 将 I 与一个奇数大小的内核 Gx进行卷积。比如,当内核大小为3时, Gx的计算结果为:
垂直变化: 将 I 与一个奇数大小的内核 Gy进行卷积。比如,当内核大小为3时, Gy的计算结果为:
在图像的每一像素上,结合以上两个结果求出近似梯度:

有时也用下面更简单公式代替,计算速度快:(最终图像梯度)。
(2)Scharr:当内核大小为3时, 以上Sobel内核可能产生比较明显的误差(毕竟,Sobel算子只是求取了导数的近似值)。 为解决这一问题,OpenCV提供了 Scharr 函数,但该函数仅作用于大小为3的内核。该函数的运算与Sobel函数一样快,但结果却更加精确,不怕干扰,其内核为:
(3)Sobel/Scharr提取边缘(求导)步骤:
1)高斯模糊平滑降噪:
GaussianBlur( src, dst, Size(3,3), 0, 0, BORDER_DEFAULT );
2)转灰度:
cvtColor( src, gray, COLOR_RGB2GRAY );
3)求X和Y方向的梯度(求导):
Sobel(gray_src, xgrad, CV_16S, 1, 0, 3);
Sobel(gray_src, ygrad, CV_16S, 0, 1, 3);
Scharr(gray_src, xgrad, CV_16S, 1, 0);
Scharr(gray_src, ygrad, CV_16S, 0, 1);
4)像素取绝对值:
convertScaleAbs(A, B); //计算图像A的像素绝对值,输出到图像B
5)相加X和Y,得到综合梯度,称为振幅图像:
addWeighted( A, 0.5,B, 0.5, 0, AB); //混合权重相加,效果较差
或者循环获取像素,每个点直接相加,效果更好。
来源:https://zhuanlan.zhihu.com/p/40491339
来源:https://zhuanlan.zhihu.com/p/50966625
Sobel算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。对噪声具有平滑作用,提供较为精确的边缘方向信息,边缘定位精度不够高。当对精度要求不是很高时,是一种较为常用的边缘检测方法。
Sobel算子是典型的基于一阶导数的边缘检测算子,由于该算子中引入了类似局部加权平均的运算,因此对噪声具有平滑作用,能很好的消除噪声的影响。Sobel算子对于象素的位置的影响做了加权。
Sobel算子包含两组3x3的矩阵,分别为横向及纵向模板,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。
Sobel算子是典型的基于一阶导数的边缘检测算子,是离散型的差分算子。该算子对噪声具有平滑作用,能很好的消除噪声的影响。Sobel算子对于像素的位置的影响做了加权,与Prewitt算子、Roberts算子相比因此效果更好。
Sobel算子包含两组3x3的矩阵,分别为横向及纵向模板,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。
链接:https://zhuanlan.zhihu.com/p/56728333
import cv2
import numpy as np
img = cv2.imread("fengjing.jpg", 0)
x = cv2.Sobel(img,cv2.CV_16S,1,0) #1,0代表只计算x方向计算边缘
y = cv2.Sobel(img,cv2.CV_16S,0,1) #0,1代表只在y方向计算边缘
absX = cv2.convertScaleAbs(x)
absY = cv2.convertScaleAbs(y)
dst = cv2.addWeighted(absX,0.5,absY,0.5,0)
cv2.imshow("absX", absX)
cv2.imshow("absY", absY)
cv2.imshow("Result", dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
测试图片:
运行结果:
Sobel边缘检测的更多相关文章
- 图像特征提取:Sobel边缘检测
前言 点和线是做图像分析时两个最重要的特征,而线条往往反映了物体的轮廓,对图像中边缘线的检测是图像分割与特征提取的基础.文章主要讨论两个实际工程中常用的边缘检测算法:Sobel边缘检测和Canny边缘 ...
- Sobel边缘检测算法(转载)
转载请注明出处: http://blog.csdn.net/tianhai110 索贝尔算子(Sobel operator)主要用作边缘检测,在技术上,它是一离散性差分算子,用来运算图像亮度函数的灰 ...
- 数字图像处理之sobel边缘检测
在前两部文章介绍了几种边缘检测算法,和位图的内存结构.如果对前两篇文章已经理解透彻 了,那么本文将带你进入数字图像处理的世界. 本文通过C代码实现基本的sobel边缘检测,包括8个方向和垂直方向: 代 ...
- 基于FPGA的Sobel边缘检测的实现
前面我们实现了使用PC端上位机串口发送图像数据到VGA显示,通过MATLAB处理的图像数据直接是灰度图像,后面我们在此基础上修改,从而实现,基于FPGA的动态图片的Sobel边缘检测.中值滤波.Can ...
- 基于MATLAB的Sobel边缘检测算法实现
图像边缘就是图像灰度值突变的地方,也就是图像在该部分的像素值变化速度非常之快,就比如在坐标轴上一条曲线有刚开始的平滑突然来个大转弯,在变化出的导数非常大. Sobel算子主要用作边缘检测,它是一离散型 ...
- 【转】基于FPGA的Sobel边缘检测的实现
前面我们实现了使用PC端上位机串口发送图像数据到VGA显示,通过MATLAB处理的图像数据直接是灰度图像,后面我们在此基础上修改,从而实现,基于FPGA的动态图片的Sobel边缘检测.中值滤波.Can ...
- Sobel边缘检测算法
索贝尔算子(Sobel operator)主要用作边缘检测,在技术上,它是一离散性差分算子,用来运算图像亮度函数的灰度之近似值.在图像的任何一点使用此算子,将会产生对应的灰度矢量或是其法矢量 Sobe ...
- zedboard zynq 学习 sobel 边缘检测 IP核 制作 根据 文档 Xapp890
官方文档http://www.xilinx.com/support/documentation/application_notes/xapp890-zynq-sobel-vivado-hls.pdf ...
- SSE再学习:灵活运用SIMD指令6倍提升Sobel边缘检测的速度(4000*3000的24位图像时间由180ms降低到30ms)。
这半年多时间,基本都在折腾一些基本的优化,有很多都是十几年前的技术了,从随大流的角度来考虑,研究这些东西在很多人看来是浪费时间了,即不能赚钱,也对工作能力提升无啥帮助.可我觉得人类所谓的幸福,可以分为 ...
随机推荐
- Data Guard配置
>> from zhuhaiqing.info 确认主库处于归档模式下 SQL>archive log list; Database log mode Archive Mode Au ...
- 一个可以模拟GET,POST,PUT,DELET请求的HTTP在线工具
一个简陋的HTTP请求工具,UI比较丑陋.0.0,可以用于接口调试. 之前在调试公司的远程接口的时候用的是curl,后来也在网上找到几种Http请求模拟的客户端程序.当时后来发现google app ...
- Ionic项目打包安卓APK
之前用Ionic+Angular做了几个小应用Demo,现在用其中一个做实验试下打包安卓的APK安装包.(备注:我用的应用demo是之前博客里写的汇率的Demo,不清楚的同学可以查哈~) 我是用ion ...
- Wormholes - poj 3259 (Bellman-Ford算法)
Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 34934 Accepted: 12752 Description W ...
- (C#)为应用程式设定运行权限(System.Security类下的GenericIdentity,GenericPrincipal,PrincipalPermission)
最近看书<编写高质量代码改善C#程序的157个建议>,知识点备忘: System.Security.Principal.GenericIdentity==>表示一般用户 System ...
- LeakCanary Android 和 Java 内存泄露检测
说起内存泄漏还是挺让人头疼的,而且不是每个手机都会发生的情况,往往又不易察觉,那么今天我们就来介绍下LeakCanary这个工具 githup:https://github.com/square/le ...
- Python 类方法、实例方法、静态方法
实例方法:类中第一个参数为self的方法. 类方法:类中第一个参数为类,约定写为cls,并被@classmethod修饰的方法. 静态方法:类中被@staticmethod修饰的方法. 类变量:定义在 ...
- selenium实现在新窗口打开链接
问题:页面代码中不存在target="_blank",怎么实现点击一个按钮,在新窗口中打开? WebElement link = element.findElement(By.ta ...
- Jmeter 05 JMeter元件详解
1. JMeter 逻辑控制器 Switch条件控制器.While条件控制器.交替控制器.仅一次控制器.随机控制器.随机顺序控制器.条件控制器(如果(if)).循环控制器.录制控制器.ForEach控 ...
- 大华NVR设备接分别入宇视摄像机Onvif和RTSP主子码流的方案说明
需求提要 1.各个内网现场有多种网络摄像机IPC和网络硬盘录像机NVR设备: 2.需要将这些设备统一接入到云端中心平台,进行统一的视频直播和录像回放管理: 3.由于目前IPC设备都属于高清设备,主码流 ...