Diophantus of Alexandria
Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first mathematicians to study equations where variables were restricted to integral values. In honor of him, these equations are commonly called diophantine equations. One of the most famous diophantine equation is x^n + y^n = z^n. Fermat suggested that for n > 2, there are no solutions with positive integral values for x, y and z. A proof of this theorem (called Fermat's last theorem) was found only recently by Andrew Wiles.
Consider the following diophantine equation:
1 / x + 1 / y = 1 / n where x, y, n ∈ N+ (1)
Diophantus is interested in the following question: for a given n, how many distinct solutions (i. e., solutions satisfying x ≤ y) does equation (1) have? For example, for n = 4, there are exactly three distinct solutions:
1 / 5 + 1 / 20 = 1 / 4
1 / 6 + 1 / 12 = 1 / 4
1 / 8 + 1 / 8 = 1 / 4
Clearly, enumerating these solutions can become tedious for bigger values of n. Can you help Diophantus compute the number of distinct solutions for big values of n quickly?
Input
The first line contains the number of scenarios. Each scenario consists of one line containing a single number n (1 ≤ n ≤ 10^9).
Output
The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Next, print a single line with the number of distinct solutions of equation (1) for the given value of n. Terminate each scenario with a blank line.
Sample Input
2
4
1260
Sample Output
Scenario #1:
3 Scenario #2:
113
代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
#define M 50005
int prime[50005];
void db()
{
int i,j;
memset(prime,0,sizeof(prime));
for(i=2; i<=M; i++)
{
if(prime[i]==0)
{
for(j=i+i; j<=M; j+=i)
{
prime[j]=1;
}
}
}
}
int main()
{
db();
int n,i,j,k,t;
scanf("%d",&t);
int sum;
int cnt=1;
while(t--)
{
sum=1;
scanf("%d",&n);
for(i=2; i<=M; i++)
{
if(n==1)
break;
if(prime[i]==0)
{
k=0;
while(n%i==0)
{
k++;
n=n/i;
}
sum=sum*(2*k+1);
}
}
if(n>1)
sum=sum*3;
printf("Scenario #%d:\n",cnt);
printf("%d\n\n",(sum+1)/2);
cnt++;
}
return 0;
}
Diophantus of Alexandria的更多相关文章
- hdu 1299 Diophantus of Alexandria (数论)
Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java ...
- Diophantus of Alexandria[HDU1299]
Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...
- hdu Diophantus of Alexandria(素数的筛选+分解)
Description Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of ...
- hdu 1299 Diophantus of Alexandria(数学题)
题目链接:hdu 1299 Diophantus of Alexandria 题意: 给你一个n,让你找1/x+1/y=1/n的方案数. 题解: 对于这种数学题,一般都变变形,找找规律,通过打表我们可 ...
- hdoj 1299 Diophantus of Alexandria
hdoj 1299 Diophantus of Alexandria 链接:http://acm.hdu.edu.cn/showproblem.php?pid=1299 题意:求 1/x + 1/y ...
- 数学--数论--HDU 1299 +POJ 2917 Diophantus of Alexandria (因子个数函数+公式推导)
Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first ma ...
- Diophantus of Alexandria(唯一分解定理)
Diophantus of Alexandria was an Egypt mathematician living in Alexandria. He was one of the first ma ...
- hdu 1299 Diophantus of Alexandria
1/x + 1/y = 1/n 1<=n<=10^9给你 n 求符合要求的x,y有多少对 x<=y// 首先 x>n 那么设 x=n+m 那么 1/y= 1/n - 1/(n+ ...
- hdu-1299 Diophantus of Alexandria(分解素因子)
思路: 因为x,y必须要大与n,那么将y设为(n+k);那么根据等式可求的x=(n2)/k+n;因为y为整数所以k要整除n*n; 那么符合上面等式的x,y的个数就变为求能被n*n整除的数k的个数,且k ...
随机推荐
- DAY11-MYSQL索引原理与慢查询优化
一 介绍 为何要有索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句 ...
- hadoop再次集群搭建(3)-如何选择相应的hadoop版本
之前接触过很多很多hadoop版本,现在重新搭建平台,面临选择哪个版本的问题. 当我们决定是否采用某个软件用于开源环境时,通常需要考虑以下几个因素: (1)是否为开源软件,即是否免费. (2) 是否有 ...
- import time
时间相关的操作,时间有三种表示方式: 时间戳 1970年1月1日之后的秒,即:time.time() 格式化的字符串 2014-11-11 11:11, 即:t ...
- php中用大括号把?>和<?php框起来的作用
<?php function my_function() { ?> My function was called <!--就是这里,为什么前面要用?>和< ?php 把M ...
- hive与hbase数据类型对应关系
hive与hbase数据类型对应关系 当hbase中double,int 类型以byte方式存储时,用字符串取出来必然是乱码. 在hivd与hbase整合时也遇到这个问题:做法是:#b 1.加#b C ...
- zedboard:使用ISE和modelsim搭建仿真环境 标签: zedboardfpgamodelsimise 2017-03-03 14:00 528人阅读
详细步骤: 产生ISE仿真库文件 开始->所有程序->xilinx design tools->simulation library compilation wizard.路径可能不 ...
- cakephp目录结构
- Android 实现形态各异的双向侧滑菜单 自定义控件来袭(转载)
1.概述 关于自定义控件侧滑已经写了两篇了~~今天决定把之前的单向改成双向,当然了,单纯的改动之前的代码也没意思,今天不仅会把之前的单向改为双向,还会多添加一种侧滑效果,给大家带来若干种形态各异的双向 ...
- Java数据结构与算法分析-第一章(引论)-Java中的范型<T,E>构件
一.为什么需要使用范型? 官方的说法是:Java 泛型(generics)是 JDK 5 中引入的一个新特性, 泛型提供了编译时类型安全检测机制,该机制允许程序员在编译时检测到非法的类型. 泛型的本质 ...
- [坑]Linux MySQL环境表名默认区分大小写
不区分大小写设置 1.用ROOT登录,修改/etc/my.cnf 2.在[mysqld]下加入一行:lower_case_table_names=1 3.重新启动数据库即可 systemctl res ...