题目链接

BZOJ5297

题解

最近这玩意这么那么火

这题要用到有向图的矩阵树定理

主对角线上对应入度

剩余位置如果有边则为\(-1\),不然为\(0\)

\(M_{i,i}\)即为以\(i\)为根的有向图生成树个数

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 255,maxm = 100005,INF = 1000000000,P = 10007;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int qpow(int a,int b){
int ans = 1;
for (; b; b >>= 1,a = a * a % P)
if (b & 1) ans = ans * a % P;
return ans;
}
int inv(int x){return qpow(x,P - 2);}
int A[maxn][maxn],n,m;
int gause(){
int rev = 1;
for (int i = 2; i <= n; i++){
int j = i;
for (int k = i + 1; k <= n; k++)
if (abs(A[k][i]) > abs(A[j][i]))
j = k;
if (j != i){
for (int k = i; k <= n; k++) swap(A[i][k],A[j][k]);
rev = -rev;
}
for (j = i + 1; j <= n; j++){
int t = A[j][i] * inv(A[i][i]) % P;
for (int k = i; k <= n; k++){
A[j][k] = ((A[j][k] - A[i][k] * t % P) % P + P) % P;
}
}
}
int re = 1;
for (int i = 2; i <= n; i++)
re = re * A[i][i] % P;
re = (re * rev % P + P) % P;
return re;
}
int main(){
n = read(); m = read();
int a,b;
while (m--){
a = read(); b = read();
if (a == b) continue;
A[b][a] = -1;
A[a][a]++;
}
printf("%d\n",gause());
return 0;
}

BZOJ5297 [Cqoi2018]社交网络 【矩阵树定理】的更多相关文章

  1. P4455 [CQOI2018]社交网络(矩阵树定理)

    题目 P4455 [CQOI2018]社交网络 \(CQOI\)的题都这么裸的吗?? 做法 有向图,指向叶子方向 \(D^{out}(G)-A(G)\) 至于证明嘛,反正也就四个定理,先挖个坑,省选后 ...

  2. BZOJ5297 CQOI2018 社交网络 【矩阵树定理Matrix-Tree】

    BZOJ5297 CQOI2018 社交网络 Description 当今社会,在社交网络上看朋友的消息已经成为许多人生活的一部分.通常,一个用户在社交网络上发布一条消息(例如微博.状态.Tweet等 ...

  3. 【BZOJ5297】【CQOI2018】社交网络(矩阵树定理)

    [BZOJ5297][CQOI2018]社交网络(矩阵树定理) 题面 BZOJ 洛谷 Description 当今社会,在社交网络上看朋友的消息已经成为许多人生活的一部分.通常,一个用户在社交网络上发 ...

  4. @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列

    目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...

  5. 矩阵树定理&BEST定理学习笔记

    终于学到这个了,本来准备省选前学来着的? 前置知识:矩阵行列式 矩阵树定理 矩阵树定理说的大概就是这样一件事:对于一张无向图 \(G\),我们记 \(D\) 为其度数矩阵,满足 \(D_{i,i}=\ ...

  6. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

  7. BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]

    传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看 ...

  8. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

  9. 【LOJ#6072】苹果树(矩阵树定理,折半搜索,容斥)

    [LOJ#6072]苹果树(矩阵树定理,折半搜索,容斥) 题面 LOJ 题解 emmmm,这题似乎猫讲过一次... 显然先\(meet-in-the-middle\)搜索一下对于每个有用的苹果数量,满 ...

随机推荐

  1. gdb几个操作

    如果进程转为守护进程,可设置如下跟进子进程 set follow-fork-mode child 输出变量/函数/返回值有print, call, display,自行选择 对于打印value has ...

  2. centos7编译安装lamp实现wordpress

    准备安装包,并解压 mariadb-10.3.13.tar.gz  ,php-7.3.2.tar.bz2  ,httpd-2.4.38.tar.bz2  php-7.3.2 ,  phpMyAdmin ...

  3. 深入理解java虚拟机学习笔记(二)垃圾回收策略

    上篇文章介绍了JVM内存模型的相关知识,其实还有些内容可以更深入的介绍下,比如运行时常量池的动态插入,直接内存等,后期抽空再完善下上篇博客,今天来介绍下JVM中的一些垃圾回收策略.        一. ...

  4. oracle中序列,同义词的创建

    序列 序列是用来生成唯一,连续的整数的数据库对象.序列通常用来自动生成主机那或唯一键的值.序列可以按升序排序, 也可以按降序排序.例如,销售流水表中的流水号可以使用序列自动生成. 创建序列语法: cr ...

  5. 区分js中的null,undefined,"",0和false

    console.log(typeof null);//object console.log(typeof undefined);//undefined console.log(typeof " ...

  6. java的有用基础知识(2013-05-02-bd 写的日志迁移

    JDK 是整个Java的核心,包括了Java运行环境.Java工具和Java基础类库.是java开发工具包 jre是java的运行环境(如果不做开发就不用安装jdk单独安装jre就可以运行java程序 ...

  7. Spark Streaming 交互 Kafka的两种方式

    一.Spark Streaming连Kafka(重点) 方式一:Receiver方式连:走磁盘 使用High Level API(高阶API)实现Offset自动管理,灵活性差,处理数据时,如果某一时 ...

  8. zookeeper的搭建方法

    1.创建三台虚拟机分别在虚拟机上安装Ubuntu16.04Server版的系统. 2.首先选择配置好第一台虚拟机,使用命令vim /etc/hosts对该文件进行修改 3.将zookeeper-3.4 ...

  9. linux epoll用法

    epoll 是 linux 特有的 I/O 复用函数.它是把用户关心的文件描述符事件放在内核的一个事件列表中,故而,无须像select和poll一样每次调用都重复传入文件描述符或事件集.但是, epo ...

  10. POJ 2079 最大三角形面积(凸包)

    Triangle Description Given n distinct points on a plane, your task is to find the triangle that have ...