AtCoder keyence2019 E Connecting Cities
keyence2019_e
$N$ 个节点的无向图 $G$,节点 $i,j$ 之间的边权值为 $|i - j| \times D + A_i + A_j$ 。
求最小生成树(Minimum Spanning Tree, MST)的权值。
数据范围
- $1 \leq N \leq 2 \times 10^5$
- $1 \leq D \leq 10^9$
- $1 \le A_i \le 10^9$
- $A_i$ and $D$ are integers.
From the editorial:
We want to compute the MST of the graph, but a straightforward algorithm doesn't work because there are $\mathcal{O}(N^2)$ edges. We first enumerate candidates of MST edges and then compute the MST of the graph with only those edges.
考虑连通的有向图 $G=(V,E)$ 。设 $T=(V, E_T)$ 是 $G$ 生成树。显然边集 $E_T$ 完全描述了 $T$,我们径用 $E_T$ 来表示 $T$ 。
From CLRS3 pp 625
Becuase a tree is a type of graph, in order to be precise we must define a tree in terms of not just its edges, but its vertices as well. Although this chapter focuses on trees in terms of their edges, we shall operate with the understanding that vertices of a tree $T$ are those that some edge of $T$ is incident on.
从 Kruskal 算法的过程出发,很容易得到下述结论:
边 $(u,v)\in E$ 不可能出现在任一 MST 中的充要条件是
$E$ 中存在路径 $u=v_0, v_1, \dots, v_{k-1}, v_{k} = v$ 满足此路径上每条边的权值都小于边 $(u,v)$ 的权值。
设从 $E$ 中去掉边 $(u,v)$ 后图仍连通。从 $E$ 中去掉边 $(u,v)$ 后 MST 的权值不变的充要条件是
$E\setminus (u, v)$ 中存在路径 $u=v_0, v_1, \dots, v_{k-1}, v_{k} = v$ 满足此路径上每条边的权值都不大于边 $(u,v)$ 的权值。
From the editorial:
... There are two ways to find candidates:
Divide and conquer.
Let's divide the array into two halves. Only consider edges between the two halves. When are interested in the edge between $i$ and $j$ such that $1 \le i \le N/2$ and $N/2 < i \le N$.
The cost of the edges can be written as $f(i) + g(i)$, where $f(i) = A_i - D_i$ and $g(j) = A_j + D_j$. Let $i_0, j_0$ be the indices that minimize the values of $f(i), g(j)$. We claim that the edge between $i$ and $j$ can be a candidate only when $i = i_0$ or $j = j_0$. Otherwise, the three edges $(i, j_0), (i_0, j), (i_0, j_0)$ are cheaper than the edge $(i, j)$, so this edge can't be included in the MST. Thus we limit the number of edges between the two halves to $\mathcal{O}(N)$.
If we apply divide-and-conquer with the observation above, the total number of candidate edges will be $\mathcal{O}(N\log N)$, and this solution works in $\mathcal{O}(N \log^2 N)$. ...
题解中的上述论述实际上假设了所有 $f(i)$ 都不相同,所有 $g(j)$ 都不相同;虽有瑕疵但无伤大雅。根据上述第二个结论,对于边 $(i,j)$,若 $i \ne i_0$ 且 $j \ne j_0$ 则路径 $i \to j_0 \to i_0 \to j$ 上的每条边的权值都不大于(not more expensive than)边 $(i,j)$ 的权值。因此若选了 $(i,j_0), (j_0, i_0), (i_0, j)$,就不必选 $(i,j)$ 了。
关于两种常见的 MST 算法,Kruskal 和 Prim,的复杂度,CLRS3 pp 624:
... We can easily make each of them run in time $\mathcal{O}(E \log V)$...
题解上又提供另一种「to find candidates」的方法
Sort by $A_i$.
For simplicity, assume that the values of $A_i$ are pairwise distinct.
Consider a particular city (call it $x$). We can prove the following about the edges that connect this city and smaller cities (cities that satisfy $A_i < A_x$):
- Among edges that connects $x$ and all smaller cities to the left of $x$, we should only consider the cheapest edge.
- Among edges that connects $x$ and all smaller cities to the right of $x$, we should only consider the cheapest edge.
Let's prove the first claim. Suppose that among edges that connects $x$ and all smaller cities to the left of $x$, the cheapest one is $(x, y)$. Then, for each other $z$ that satisfies $z < x$ and $A_z < A_x$, both edges $(x, y)$ and $(y, z)$ are cheaper than $(x,y)$. Thus, $(x, z)$ never becomes the MST edge. The second claim is similar.
This way, the candidates will be $\mathcal{O}(N)$, and this solution works in $\mathcal{O}(N\log N)$.
此段论述中仍有瑕疵,下面做一点解释和补充。
「cities to the left of $x$」意谓编号小于 $x$ 的城市(即节点)。
「the values of $A_i$ are pairwise distinct」这个 assumption 是不必要的。
把 smaller cities 理解为把所有城市按 $A_i$ 从小到大排序后,排在 $x$ 左边的城市,不要与此“左”与 “to the left to $x$” 之左相混淆。
为了便于描述,借用 CLRS3 pp 626 中 light edge 这个术语
... More generally, we say that an edge is a light edge satisfying a given property if its weight is the minimum of any edge satisfying the property.
令 $L_x$ 表示 smaller cities to the left of $x$ 之集合,$R_x$ 表示 smaller cities to the right of $x$ 之集合。
以 $w(u,v)$ 表示边 $(u,v)$ 的权值。
设 $(y,x)$ 是连接 $x$ 与 $L_x$ 之间的 light edge。则对于任意 $z \ne y$ 且 $z \in L_x$,有 $w(x,y) \le w(x, z)$ 且 $w(y,z) \le w(x,z)$。
证明:$w(x,y) \le w(x, z)$ 由定义自明。
若 $y > z$ 则 $w(x, z) > w(y, z)$ 是显然的。
$w (x, y) \le w(x, z) \implies A_y - Dy \le A_z - Dz \implies D(y - z) \ge A_y - A_z$ 。
若 $y < z$ 则有
\begin{aligned}
w(x, z) - w(y, z) &= A_x - A_y + D(x - z) + D(y - z) \\
&\ge A_x - A_y + D(x - z) + A_y - A_ z \\
&= A_x - A_z + D(x - z) \\
&> 0
\end{aligned}
至此可得出结论:对于 $x$ 与 $L_x$ 之间的边,只保留 $(x,y)$(即只保留一条 light edge),最小生成树的权值不变。
按右到左的顺序删边,即可安全地(safely)将此类冗余的边全部删掉。
注意:按右到左的顺序删边,蕴含着一个 loop invariant 。
依对称性顷见 $x$ 与 $R_x$ 之间亦有类似结论。
AtCoder keyence2019 E Connecting Cities的更多相关文章
- atcoder.keyence2019.contest E-Connecting Cities
真是道好题啊,当时怎么想都没想出来... 传送门 简述题意: 有n个点,每个点有一个权值Ai,连接i,j两个点的代价是 |i−j|×D+Ai+Aj 其中D是给定的常数,问把n个点联通的最小代价 1≤ ...
- LeetCode 1135. Connecting Cities With Minimum Cost
原题链接在这里:https://leetcode.com/problems/connecting-cities-with-minimum-cost/ 题目: There are N cities nu ...
- 【LeetCode】1135. Connecting Cities With Minimum Cost 解题报告 (C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 Kruskal算法 日期 题目地址:https://l ...
- 【AtCoder】KEYENCE Programming Contest 2019
A - Beginning 这个年份恐怕需要+2 #include <bits/stdc++.h> #define fi first #define se second #define p ...
- csuoj 1116: Kingdoms
http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1116 1116: Kingdoms Time Limit: 3 Sec Memory Limit ...
- CodeForces Round 192 Div2
This is the first time I took part in Codeforces Competition.The only felt is that my IQ was contemp ...
- CF 191C Fools and Roads lca 或者 树链剖分
They say that Berland has exactly two problems, fools and roads. Besides, Berland has n cities, popu ...
- Bumped! 2017 ICPC North American Qualifier Contest (分层建图+dijstra)
题目描述 Peter returned from the recently held ACM ICPC World finals only to find that his return flight ...
- Bumped!【最短路】(神坑
问题 B: Bumped! 时间限制: 1 Sec 内存限制: 128 MB 提交: 351 解决: 44 [提交] [状态] [命题人:admin] 题目描述 Peter returned fr ...
随机推荐
- AMD、CMD和CommonJS规范(转)
CommonJS规范 CommonJS是在浏览器环境之外构建JavaScript生态系统为目标产生的项目,比如服务器和桌面环境中.CommonJS规范是为了解决JavaScript的作用域问题而定义 ...
- iOS 检测版本更新(02)
iOS 检测版本更新 如果我们要检测app版本的更新,那么我们必须获取当前运行app版本的版本信息和appstore 上发布的最新版本的信息. 当前运行版本信息可以通过info.plist文件中的bu ...
- 基于Xtrabackup恢复单个innodb表
Preface We all know that Xtrabackup is a backup tool of percona for innodb or Xtradb.It's us ...
- opencms研究笔记
最近公司一新产品,众多选型之后: 最后还是准备在用opencms 在opencms的基础上,进行二次开发: 有一起研究的没 欢迎交流:
- Linux用户与组管理命令
1.列出当前系统上所有已经登录的用户的用户名,注意:同一个用户登录多次,则只显示一次即可. who | cut -d" " -f1 | sort -u 或 who | cut -d ...
- Apache POI 工具类 [ PoiUtil ]
pom.xml <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi-ooxml ...
- 【yii】【php】自定义故障代码
实际状态码: 200 操作成功 406 账号密码错误 208 请勿重复操作 401 需登陆验证 405 不容许此方法 409 验证错误
- 多通道CNN
在读Convolutional Neural Networks for Sentence Classification 这个文章的时候,它在论文中提出一种模型变种就是 CNN-multichannel ...
- 准备篇(三)Makefile
Makefile 也是蛮多的, 嵌入式的Makefile也是很重要的,所以单独开一个分支.
- Poweroj:2425-跳台阶(经典递推)
题目链接:https://www.oj.swust.edu.cn/problem/show/2425 跳台阶 Edit Manage Data Rejudge Time Limit: 1000 MS ...