caffe的损失函数
损失函数,一般由两项组成,一项是loss term,另外一项是regularization term。
J=L+R
先说损失项loss,再说regularization项。
1. 分对得分1,分错得分0.gold standard
2. hinge loss(for softmargin svm),J=1/2||w||^2 + sum(max(0,1-yf(w,x)))
3. log los, cross entropy loss function in logistic regression model.J=lamda||w||^2+sum(log(1+e(-yf(wx))))
4. squared loss, in linear regression. loss=(y-f(w,x))^2
5. exponential loss in boosting. J=lambda*R+exp(-yf(w,x))
再说regularization项,
一般用的多的是R2=1/2||w||^2,R1=sum(|w|)。R1和R2是凸的,同时R1会使得损失函数更加具有sparse,而R2则会更加光滑些。具体可以参见下图:

caffe的损失函数,目前已经囊括了所有可以用的了吧,损失函数由最后一层分类器决定,同时有时会加入regularization,在BP过程中,使得误差传递得以良好运行。
contrastive_loss,对应contrastive_loss_layer,我看了看代码,这个应该是输入是一对用来做验证的数据,比如两张人脸图,可能是同一个人的(正样本),也可能是不同个人(负样本)。在caffe的examples中,siamese这个例子中,用的损失函数是该类型的。该损失函数具体数学表达形式可以参考lecun的文章Dimensionality Reduction by Learning an Invariant Mapping, Raia Hadsell, Sumit Chopra, Yann LeCun, cvpr 2006.
euclidean_loss,对应euclidean_loss_layer,该损失函数就是l=(y-f(wx))^2,是线性回归常用的损失函数。
hinge_loss,对应hinge_loss_layer,该损失函数就是
。主要用在SVM分类器中。
infogain_loss,对应infogain_loss_layer,损失函数表达式没找到,只知道这是在文本处理中用到的损失函数。
multinomial_logistic_loss,对应multinomial_logistic_loss_layer,
sigmoid_cross_entropy,对应sigmoid_cross_entropy_loss_layer,也就是logistic regression使用的损失函数。
softmax_loss,对应softmax_loss_layer,损失函数等可以见UFLDL中关于softmax章节。在caffe中多类分类问题,损失函数就是softmax_loss,比如imagenet, mnist等。softmax_loss是sigmoid的多类问题。但是,我就没明白,multinomial_logistic_loss和这个有什么区别,看代码,输入有点差别,softmax的输入是probability,而multinomial好像不要求是probability,但是还是没明白,如果只是这样,岂不是一样啊?
这里详细说明了两者之间的差异,并且有详细的测试结果,非常赞。简单理解,multinomial 是将loss分成两个层进行,而softmax则是合在一起了。或者说,multinomial loss是按部就班的计算反向梯度,而softmax则是把两个步骤直接合并为一个步骤进行了,减少了中间的精度损失等 ,从计算稳定性讲,softmax更好,multinomial是标准做法,softmax则是一种优化吧。
转自caffe:
Softmax
- LayerType:
SOFTMAX_LOSS
The softmax loss layer computes the multinomial logistic loss of the softmax of its inputs. It’s conceptually identical to a softmax layer followed by a multinomial logistic loss layer, but provides a more numerically stable gradient.
references:
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf
http://caffe.berkeleyvision.org/tutorial/layers.html
Bishop, pattern recognition and machine learning
http://deeplearning.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92
http://freemind.pluskid.org/machine-learning/softmax-vs-softmax-loss-numerical-stability/
caffe的损失函数的更多相关文章
- Caffe学习笔记(二):Caffe前传与反传、损失函数、调优
Caffe学习笔记(二):Caffe前传与反传.损失函数.调优 在caffe框架中,前传/反传(forward and backward)是一个网络中最重要的计算过程:损失函数(loss)是学习的驱动 ...
- Caffe框架下的图像回归测试
Caffe框架下的图像回归测试 参考资料: 1. http://stackoverflow.com/questions/33766689/caffe-hdf5-pre-processing 2. ht ...
- Caffe学习系列(13):对训练好的模型进行fine-tune
使用http://www.cnblogs.com/573177885qq/p/5804863.html中的图片进行训练和测试. 整个流程差不多,fine-tune命令: ./build/tools/c ...
- caffe中各层的作用:
关于caffe中的solver: cafffe中的sover的方法都有: Stochastic Gradient Descent (type: "SGD"), AdaDelta ( ...
- Caffe(卷积神经网络框架)介绍
Caffe(卷积神经网络框架)Caffe,全称Convolution Architecture For Feature Extraction caffe是一个清晰,可读性高,快速的深度学习框架.作者是 ...
- caffe: fuck compile error again : error: a value of type "const float *" cannot be used to initialize an entity of type "float *"
wangxiao@wangxiao-GTX980:~/Downloads/caffe-master$ make -j8find: `wangxiao/bvlc_alexnet/spl': No suc ...
- CAFFE中训练与使用阶段网络设计的不同
神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真正要使 ...
- caffe︱深度学习参数调优杂记+caffe训练时的问题+dropout/batch Normalization
一.深度学习中常用的调节参数 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1.学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间.步长的选择比较麻烦.步长越小,越容易得到局部最优 ...
- 利用Caffe训练模型(solver、deploy、train_val)+python使用已训练模型
本文部分内容来源于CDA深度学习实战课堂,由唐宇迪老师授课 如果你企图用CPU来训练模型,那么你就疯了- 训练模型中,最耗时的因素是图像大小size,一般227*227用CPU来训练的话,训练1万次可 ...
随机推荐
- jsp中判断if 和 else
<c:choose> <c:when test="${date==datetime}"> ...
- suau 公约公倍
8619 公约公倍 时间限制:500MS 内存限制:1000K 提交次数:475 通过次数:108 题型: 编程题 语言: G++;GCC Description 给定六个正整数a,b,c,d ...
- 使用Myeclipse导入IDEA项目
问题描述:使用Myeclipse导入IDEA创建的Web项目,成功导入,但是显示的是一个普通的JAVA项目,无法加载到tomcat下. 解决方案:右键项目Properties,选择Myeclipse- ...
- maya2017安装失败如何卸载重装
AUTODESK系列软件着实令人头疼,安装失败之后不能完全卸载!!!(比如maya,cad,3dsmax等).有时手动删除注册表重装之后还是会出现各种问题,每个版本的C++Runtime和.NET f ...
- MongoDB + express + node + bootstrap 搭建多人博客
这篇博客讲述如何搭建一个多人博客,需要一定的基础知识,用于思路整理和备忘. 第一步: 新建文件夹 blog ,结构如下: bin --- 可执行二进制文件,最终的启动接口. models --- 存储 ...
- maven实战迷你版记录
1. ~/.m2 文件 默认情况下,该文件夹下放置了 Maven 本地 仓库.m2/repository.所有的 Maven 构件(artifact)都被存储到该仓库中,以方便重用. 默认情况下,~ ...
- WCF:无法满足对安全令牌的请求,因为身份验证失败。
服务端和客户端如果有认证的话的这样: <wsHttpBinding> <binding name="WSHttpBinding_IService1" closeT ...
- Debug Diagnostics Tool创建.Net异常转储并用Windbg分析异常
当我们要在IIS PRD环境下分析异常,并且对问题毫无头绪,又没有权限直接上打Log的代码.这个时候就是Debug Diagnostics Tool & Windbg大显神威的时候了. Deb ...
- kafka brokers配置参数详解
基本配置如下: -broker.id-log.dirs-zookeeper.connect Topic-level配置以及其默认值将在下面讨论. Property Default Descriptio ...
- Hibernate课程 初探一对多映射3-4 双向多对一的测试
1 单向多对一和单向多对一的区别 比如部门和员工,一个部门下有很多员工,如果只查一个员工属于哪个部门,就用单向的,如果还要查一个部门下的所有员工,就用双向的. 2 双向多对一的配置 除了单向xml和双 ...