《算法》第四章部分程序 part 9
▶ 书中第四章部分程序,包括在加上自己补充的代码,两种拓扑排序的方法
● 拓扑排序 1
package package01; import edu.princeton.cs.algs4.Digraph;
import edu.princeton.cs.algs4.SymbolDigraph;
import edu.princeton.cs.algs4.DirectedCycle;
import edu.princeton.cs.algs4.DepthFirstOrder;
import edu.princeton.cs.algs4.EdgeWeightedDigraph;
import edu.princeton.cs.algs4.EdgeWeightedDirectedCycle; public class class01
{
private Iterable<Integer> order; // 拓扑排序的结果
private int[] rank; // 顶点 v 在拓扑排序中的序号为 rank[v] public class01(Digraph G) // 从有向图生成拓扑排序
{
DirectedCycle finder = new DirectedCycle(G); // 存在环则不能排序
if (!finder.hasCycle())
{
DepthFirstOrder dfs = new DepthFirstOrder(G); // 做 G 的深度优先搜索
order = dfs.reversePost(); // 取逆后序依次标号
rank = new int[G.V()];
int i = 0;
for (int v : order)
rank[v] = i++;
}
} public class01(EdgeWeightedDigraph G) // 从加权边有向图生成拓扑排序(算法一样,只是数据结构不同)
{
EdgeWeightedDirectedCycle finder = new EdgeWeightedDirectedCycle(G);
if (!finder.hasCycle())
{
DepthFirstOrder dfs = new DepthFirstOrder(G);
order = dfs.reversePost();
rank = new int[G.V()];
int i = 0;
for (int v : order)
rank[v] = i++;
}
} public Iterable<Integer> order()
{
return order;
} public boolean hasOrder()
{
return order != null;
} public int rank(int v)
{
return hasOrder() ? rank[v] : -1;
} public static void main(String[] args)
{
String filename = args[0];
String delimiter = args[1]; // 分隔符
SymbolDigraph sg = new SymbolDigraph(filename, delimiter);
class01 topological = new class01(sg.digraph());
for (int v : topological.order())
System.out.println(sg.nameOf(v));
}
}
● 拓扑排序 2
package package01; import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.StdRandom;
import edu.princeton.cs.algs4.DigraphGenerator;
import edu.princeton.cs.algs4.Digraph;
import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.DirectedEdge;
import edu.princeton.cs.algs4.EdgeWeightedDigraph; public class class01
{
private Queue<Integer> order;
private int[] rank; public class01(Digraph G)
{
order = new Queue<Integer>();
rank = new int[G.V()];
int[] indegree = new int[G.V()];
for (int v = 0; v < G.V(); v++)
indegree[v] = G.indegree(v);
int count = 0;
Queue<Integer> queue = new Queue<Integer>();
for (int v = 0; v < G.V(); v++) // 收集所有没有前提条件的顶点
{
if (indegree[v] == 0)
queue.enqueue(v);
}
for (; !queue.isEmpty();)
{
int v = queue.dequeue();
order.enqueue(v); // 事件 v 完成,将其放入输出队列, 并给一个序号
rank[v] = count++;
for (int w : G.adj(v)) // 所有紧接着 v 的事件的前提条件减少 1
{
indegree[w]--;
if (indegree[w] == 0) // 收集此时没有前提条件的事件
queue.enqueue(w);
}
}
if (count != G.V()) // 遍历结束,还有顶点有入度,说明存在环
order = null;
} public class01(EdgeWeightedDigraph G)
{
order = new Queue<Integer>();
rank = new int[G.V()];
int[] indegree = new int[G.V()];
for (int v = 0; v < G.V(); v++)
indegree[v] = G.indegree(v);
int count = 0;
Queue<Integer> queue = new Queue<Integer>();
for (int v = 0; v < G.V(); v++)
{
if (indegree[v] == 0)
queue.enqueue(v);
}
for (; !queue.isEmpty();)
{
int v = queue.dequeue();
order.enqueue(v);
rank[v] = count++;
for (DirectedEdge e : G.adj(v))
{
int w = e.to();
indegree[w]--;
if (indegree[w] == 0)
queue.enqueue(w);
}
}
if (count != G.V())
order = null;
} public Iterable<Integer> order()
{
return order;
} public boolean hasOrder()
{
return order != null;
} public int rank(int v)
{
return hasOrder() ? rank[v] : -1;
} public static void main(String[] args)
{
int V = Integer.parseInt(args[0]); // 生成DAG G(V,E),再添加 F 条边
int E = Integer.parseInt(args[1]);
int F = Integer.parseInt(args[2]);
Digraph G1 = DigraphGenerator.dag(V, E); // G1 是无边圈的
EdgeWeightedDigraph G2 = new EdgeWeightedDigraph(V);// G2 有边权的
for (int v = 0; v < G1.V(); v++)
{
for (int w : G1.adj(v))
G2.addEdge(new DirectedEdge(v, w, 0.0));
}
for (int i = 0; i < F; i++)
{
int v = StdRandom.uniform(V);
int w = StdRandom.uniform(V);
G1.addEdge(v, w);
G2.addEdge(new DirectedEdge(v, w, 0.0));
}
StdOut.println(G1);
StdOut.println();
StdOut.println(G2);
class01 topological1 = new class01(G1); // 分别计算 G1 和 G2 的
if (!topological1.hasOrder())
StdOut.println("Not a DAG");
else
{
StdOut.print("Topological order: ");
for (int v : topological1.order())
StdOut.print(v + " ");
StdOut.println();
}
class01 topological2 = new class01(G2);
if (!topological2.hasOrder())
StdOut.println("Not a DAG");
else
{
StdOut.print("Topological order: ");
for (int v : topological2.order())
StdOut.print(v + " ");
StdOut.println();
}
}
}
《算法》第四章部分程序 part 9的更多相关文章
- 《算法》第四章部分程序 part 19
▶ 书中第四章部分程序,包括在加上自己补充的代码,有边权有向图的邻接矩阵,FloydWarshall 算法可能含负环的有边权有向图任意两点之间的最短路径 ● 有边权有向图的邻接矩阵 package p ...
- 《算法》第四章部分程序 part 18
▶ 书中第四章部分程序,包括在加上自己补充的代码,在有权有向图中寻找环,Bellman - Ford 算法求最短路径,套汇算法 ● 在有权有向图中寻找环 package package01; impo ...
- 《算法》第四章部分程序 part 16
▶ 书中第四章部分程序,包括在加上自己补充的代码,Dijkstra 算法求有向 / 无向图最短路径,以及所有顶点对之间的最短路径 ● Dijkstra 算法求有向图最短路径 package packa ...
- 《算法》第四章部分程序 part 15
▶ 书中第四章部分程序,包括在加上自己补充的代码,Kruskal 算法和 Boruvka 算法求最小生成树 ● Kruskal 算法求最小生成树 package package01; import e ...
- 《算法》第四章部分程序 part 14
▶ 书中第四章部分程序,包括在加上自己补充的代码,两种 Prim 算法求最小生成树 ● 简单 Prim 算法求最小生成树 package package01; import edu.princeton ...
- 《算法》第四章部分程序 part 10
▶ 书中第四章部分程序,包括在加上自己补充的代码,包括无向图连通分量,Kosaraju - Sharir 算法.Tarjan 算法.Gabow 算法计算有向图的强连通分量 ● 无向图连通分量 pack ...
- 《算法》第四章部分程序 part 17
▶ 书中第四章部分程序,包括在加上自己补充的代码,无环图最短 / 最长路径通用程序,关键路径方法(critical path method)解决任务调度问题 ● 无环图最短 / 最长路径通用程序 pa ...
- 《算法》第四章部分程序 part 13
▶ 书中第四章部分程序,包括在加上自己补充的代码,图的前序.后序和逆后续遍历,以及传递闭包 ● 图的前序.后序和逆后续遍历 package package01; import edu.princeto ...
- 《算法》第四章部分程序 part 12
▶ 书中第四章部分程序,包括在加上自己补充的代码,图的几种补充数据结构,包括无向 / 有向符号图,有权边结构,有边权有向图 ● 无向符号图 package package01; import edu. ...
随机推荐
- jQuery介绍 常用选择器
jquery现在三个版本, 1.x 2.x 3.x 都在用,越小的版本兼容性越好,ie8以下浏览器也支持,新功能不多.我们通常使用1.x 在html中,css放Head中,js放body尾部 j ...
- 虚拟机中安装centOS及破解nuke的方法
跟the foundry的工程师邮件交流,我的一个Nuke脚本在对方机器上执行有问题,确认对方是centOS之后我决定在自己机器上安装一个centOS来找一下问题所在.安装重点如下: 一: 一定要下载 ...
- 写了一个RenderInBackground的脚本
某主管希望write节点有多线程渲染的功能,而nuke中的render in background功能恰恰可以多个渲染任务同时执行,于是我考虑使用这个方法来实现. 调 试过程中发现renderinba ...
- sql 数据类型转换
1.convert(float,endtimepart)——conver(数据类型,字段名称) 2.cast(endtimepart as float)——cast(字段名称 as 数据类型)
- 纯css3实现文字间歇滚动效果
场景: 假设有4条数据或者标题,视口中只显示两条,采用每次向上滚动一条数据来展示所有的数据.效果如图: 用JavaScript也很容易实现,但是需要操作DOM,可以参考这篇博客.考虑到项目中经常使用V ...
- bzoj5044: 岛屿生成
Description 小Q设计了一款2D游戏,它的地图建立在二维笛卡尔坐标系上.这个游戏最大的特色就是可以随机生成地图,但是 岛屿生成却给小Q带来了巨大的麻烦.一个岛屿可以看成一个恰好有n个顶点的简 ...
- ubuntu16.04安装chrome
方法1: 到 https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb 下载最新的安装文件. 然后使用cd命令 ...
- Dubbo(1)简介和Zookeeper安装
一.简介: Dubbo主页地址 http://dubbo.io/ Dubbo百度百科:https://baike.baidu.com/item/Dubbo/18907815?fr=aladdin 二 ...
- Oracle下PLSQL连接没有数据库的问题
https://blog.csdn.net/master_yao/article/details/51055850 参考博文地址 当PLSQL连接提示时请注意 请将首选项里内容进行修改 指定oci.d ...
- Zabbix 卸载包 采用yum方式