▶ 书中第四章部分程序,包括在加上自己补充的代码,两种拓扑排序的方法

● 拓扑排序 1

 package package01;

 import edu.princeton.cs.algs4.Digraph;
import edu.princeton.cs.algs4.SymbolDigraph;
import edu.princeton.cs.algs4.DirectedCycle;
import edu.princeton.cs.algs4.DepthFirstOrder;
import edu.princeton.cs.algs4.EdgeWeightedDigraph;
import edu.princeton.cs.algs4.EdgeWeightedDirectedCycle; public class class01
{
private Iterable<Integer> order; // 拓扑排序的结果
private int[] rank; // 顶点 v 在拓扑排序中的序号为 rank[v] public class01(Digraph G) // 从有向图生成拓扑排序
{
DirectedCycle finder = new DirectedCycle(G); // 存在环则不能排序
if (!finder.hasCycle())
{
DepthFirstOrder dfs = new DepthFirstOrder(G); // 做 G 的深度优先搜索
order = dfs.reversePost(); // 取逆后序依次标号
rank = new int[G.V()];
int i = 0;
for (int v : order)
rank[v] = i++;
}
} public class01(EdgeWeightedDigraph G) // 从加权边有向图生成拓扑排序(算法一样,只是数据结构不同)
{
EdgeWeightedDirectedCycle finder = new EdgeWeightedDirectedCycle(G);
if (!finder.hasCycle())
{
DepthFirstOrder dfs = new DepthFirstOrder(G);
order = dfs.reversePost();
rank = new int[G.V()];
int i = 0;
for (int v : order)
rank[v] = i++;
}
} public Iterable<Integer> order()
{
return order;
} public boolean hasOrder()
{
return order != null;
} public int rank(int v)
{
return hasOrder() ? rank[v] : -1;
} public static void main(String[] args)
{
String filename = args[0];
String delimiter = args[1]; // 分隔符
SymbolDigraph sg = new SymbolDigraph(filename, delimiter);
class01 topological = new class01(sg.digraph());
for (int v : topological.order())
System.out.println(sg.nameOf(v));
}
}

● 拓扑排序 2

 package package01;

 import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.StdRandom;
import edu.princeton.cs.algs4.DigraphGenerator;
import edu.princeton.cs.algs4.Digraph;
import edu.princeton.cs.algs4.Queue;
import edu.princeton.cs.algs4.DirectedEdge;
import edu.princeton.cs.algs4.EdgeWeightedDigraph; public class class01
{
private Queue<Integer> order;
private int[] rank; public class01(Digraph G)
{
order = new Queue<Integer>();
rank = new int[G.V()];
int[] indegree = new int[G.V()];
for (int v = 0; v < G.V(); v++)
indegree[v] = G.indegree(v);
int count = 0;
Queue<Integer> queue = new Queue<Integer>();
for (int v = 0; v < G.V(); v++) // 收集所有没有前提条件的顶点
{
if (indegree[v] == 0)
queue.enqueue(v);
}
for (; !queue.isEmpty();)
{
int v = queue.dequeue();
order.enqueue(v); // 事件 v 完成,将其放入输出队列, 并给一个序号
rank[v] = count++;
for (int w : G.adj(v)) // 所有紧接着 v 的事件的前提条件减少 1
{
indegree[w]--;
if (indegree[w] == 0) // 收集此时没有前提条件的事件
queue.enqueue(w);
}
}
if (count != G.V()) // 遍历结束,还有顶点有入度,说明存在环
order = null;
} public class01(EdgeWeightedDigraph G)
{
order = new Queue<Integer>();
rank = new int[G.V()];
int[] indegree = new int[G.V()];
for (int v = 0; v < G.V(); v++)
indegree[v] = G.indegree(v);
int count = 0;
Queue<Integer> queue = new Queue<Integer>();
for (int v = 0; v < G.V(); v++)
{
if (indegree[v] == 0)
queue.enqueue(v);
}
for (; !queue.isEmpty();)
{
int v = queue.dequeue();
order.enqueue(v);
rank[v] = count++;
for (DirectedEdge e : G.adj(v))
{
int w = e.to();
indegree[w]--;
if (indegree[w] == 0)
queue.enqueue(w);
}
}
if (count != G.V())
order = null;
} public Iterable<Integer> order()
{
return order;
} public boolean hasOrder()
{
return order != null;
} public int rank(int v)
{
return hasOrder() ? rank[v] : -1;
} public static void main(String[] args)
{
int V = Integer.parseInt(args[0]); // 生成DAG G(V,E),再添加 F 条边
int E = Integer.parseInt(args[1]);
int F = Integer.parseInt(args[2]);
Digraph G1 = DigraphGenerator.dag(V, E); // G1 是无边圈的
EdgeWeightedDigraph G2 = new EdgeWeightedDigraph(V);// G2 有边权的
for (int v = 0; v < G1.V(); v++)
{
for (int w : G1.adj(v))
G2.addEdge(new DirectedEdge(v, w, 0.0));
}
for (int i = 0; i < F; i++)
{
int v = StdRandom.uniform(V);
int w = StdRandom.uniform(V);
G1.addEdge(v, w);
G2.addEdge(new DirectedEdge(v, w, 0.0));
}
StdOut.println(G1);
StdOut.println();
StdOut.println(G2);
class01 topological1 = new class01(G1); // 分别计算 G1 和 G2 的
if (!topological1.hasOrder())
StdOut.println("Not a DAG");
else
{
StdOut.print("Topological order: ");
for (int v : topological1.order())
StdOut.print(v + " ");
StdOut.println();
}
class01 topological2 = new class01(G2);
if (!topological2.hasOrder())
StdOut.println("Not a DAG");
else
{
StdOut.print("Topological order: ");
for (int v : topological2.order())
StdOut.print(v + " ");
StdOut.println();
}
}
}

《算法》第四章部分程序 part 9的更多相关文章

  1. 《算法》第四章部分程序 part 19

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,有边权有向图的邻接矩阵,FloydWarshall 算法可能含负环的有边权有向图任意两点之间的最短路径 ● 有边权有向图的邻接矩阵 package p ...

  2. 《算法》第四章部分程序 part 18

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,在有权有向图中寻找环,Bellman - Ford 算法求最短路径,套汇算法 ● 在有权有向图中寻找环 package package01; impo ...

  3. 《算法》第四章部分程序 part 16

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,Dijkstra 算法求有向 / 无向图最短路径,以及所有顶点对之间的最短路径 ● Dijkstra 算法求有向图最短路径 package packa ...

  4. 《算法》第四章部分程序 part 15

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,Kruskal 算法和 Boruvka 算法求最小生成树 ● Kruskal 算法求最小生成树 package package01; import e ...

  5. 《算法》第四章部分程序 part 14

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,两种 Prim 算法求最小生成树 ● 简单 Prim 算法求最小生成树 package package01; import edu.princeton ...

  6. 《算法》第四章部分程序 part 10

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,包括无向图连通分量,Kosaraju - Sharir 算法.Tarjan 算法.Gabow 算法计算有向图的强连通分量 ● 无向图连通分量 pack ...

  7. 《算法》第四章部分程序 part 17

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,无环图最短 / 最长路径通用程序,关键路径方法(critical path method)解决任务调度问题 ● 无环图最短 / 最长路径通用程序 pa ...

  8. 《算法》第四章部分程序 part 13

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,图的前序.后序和逆后续遍历,以及传递闭包 ● 图的前序.后序和逆后续遍历 package package01; import edu.princeto ...

  9. 《算法》第四章部分程序 part 12

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,图的几种补充数据结构,包括无向 / 有向符号图,有权边结构,有边权有向图 ● 无向符号图 package package01; import edu. ...

随机推荐

  1. 美剧黑名单的插曲《Jolene》

    网易上有Slowdown 版本.<Jolene>Dolly Parton

  2. Docker Compose 配置文件详解

    先来看一份 docker-compose.yml 文件,不用管这是干嘛的,只是有个格式方便后文解说: version: '2' services: web: image: dockercloud/he ...

  3. Docker+Nginx部署Angular

    在部署Angular生产环境之前,需要电脑已经安装docker. 添加Dockerfile在已经完成的Angular项目的项目根目录下添加Dockerfile文件. Dockerfile文件内容: F ...

  4. html框内文字垂直居中的方法

    由于无法知道框内文字的高度,很难确定垂直空间的位置.vertical-align:middle仅对td元素有效,无论单行和多行均可实现垂直居中.

  5. C#应用jstree实现无限级节点的方法

    下载jstree.js下载地址: http://jstree.com/ 当前下载版本: jsTree 3.3.1 第一步:下载完成后引用js+css <link href="~/plu ...

  6. react表单事件和取值

    常见的表单包括输入框,单选框,复选框,下拉框和多文本框,本次主要总结它们在react中如何取值. 输入框 在之前有说过输入框,可以先给input框的value绑定一个值,然后通过input框的改变事件 ...

  7. 关于oracle的sqlplus显示不完全的修改方法

    这样的显示看起来很痛苦 需要换行的时候没有进行换行,不需要换行的时候却进行了换行 参考的博客地址 https://blog.csdn.net/pan_tian/article/details/8059 ...

  8. ha环境下重新格式化hdfs报错

    datanode启动不成功,如下所示,我的136,137.138都是datanode,都启动不了. 查看datanode日志文件发现报错: 一个报错Incompatible clusterIDs in ...

  9. Spring之Ioc原理

    ioc 控制反转 使用的 单例模式 和 工厂模式 单例模式保证创建对象的唯一性 工厂模式实现解耦合的作用 通过dm4j类似的技术读取xml文件中bean标签的属性值,id和class 利用反射技术和c ...

  10. mysql命令行批量插入100条数据命令

    先介绍一个关键字的使用: delimiter 定好结束符为"$$",(定义的时候需要加上一个空格) 然后最后又定义为";", MYSQL的默认结束符为" ...