2016-05-02开始决定好好记录一切有关《数据科学家》的学习过程。记录学习笔记。

-------------------------------------------------------------------------------------------------

第一部分:14年跟百度T7师兄学了一段时间的机器学习基础知识。Java实现基础算法。复习一遍基础知识。

-------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------

第六课,逻辑回归

-------------------------------------------------------------------------------------------------

http://www.cnblogs.com/keedor/p/4459196.html这个链接里面有公式推导。

损失函数loss function 由两部分构成:损失项(loss term) + 正则项(regularization term)。

通常而言,损失函数由损失项(loss term)和正则项(regularization term)组成。发现一份不错的介绍资料:

http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf (题名“Loss functions; a unifying view”)。
 
一、损失项
  • 对回归问题,常用的有:平方损失(for linear regression),绝对值损失;
  • 对分类问题,常用的有:hinge loss(for soft margin SVM),log loss(for logistic regression)。
  • 对hinge loss,又可以细分出hinge loss(或简称L1 loss)和squared hinge loss(或简称L2 loss)。国立台湾大学的Chih-Jen Lin老师发布的Liblinear就实现了这2种hinge loss。L1 loss和L2 loss与下面的regularization是不同的,注意区分开。
二、正则项
  • 常用的有L1-regularization和L2-regularization。上面列的那个资料对此还有详细的总结。

这里的逻辑回归用的就是log loss。那么他的推导过程就是把似然函数写出来之后求出小L(theta)。然后loss function 取他的-1/m。这样就可以求出每一个theta的偏导。因为前面去了-1,所以依然用梯度下降来解。(最大似然求的是最大值,那么取反之后求的是最小值。)

实现的代码如下:

题目:

Problem Logistic Regression 逻辑回归
题目描述:
逻辑回归(Logistic Regression)是最基础、使用最广泛的机器学习分类算法之一。它以线
性回归为理论支持,在线性回归的基础上增加了sigmoid 函数(逻辑回归函数),从而轻松处
理0/1 分类问题。在本题中,你需要使用梯度下降算法(gradient descent)实现一个线性回归
训练器。
具体如下:
已知逻辑回归方程,即估计函数(hypothesis)为:
其中n 为特征个数,θ0至θ

Data scientist———java实现常见的机器学习代码(跟百度深度学习研究院师兄学机器学习)的更多相关文章

  1. 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

  2. 机器学习(Machine Learning)&amp;深度学习(Deep Learning)资料

    机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008 ...

  3. 【课程学习】课程2:十行代码高效完成深度学习POC

    本文用户记录黄埔学院学习的心得,并补充一些内容. 课程2:十行代码高效完成深度学习POC,主讲人为百度深度学习技术平台部:陈泽裕老师. 因为我是CV方向的,所以内容会往CV方向调整一下,有所筛检. 课 ...

  4. 【重磅干货整理】机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

    [重磅干货整理]机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总 .

  5. Python、机器学习、计算机视觉、深度学习入门

    1.简明Python教程 2.Python计算机视觉编程 3.机器学习实践 4.吴恩达机器学习 5.李飞飞深度学习与计算机视觉

  6. 机器学习如何选择模型 & 机器学习与数据挖掘区别 & 深度学习科普

    今天看到这篇文章里面提到如何选择模型,觉得非常好,单独写在这里. 更多的机器学习实战可以看这篇文章:http://www.cnblogs.com/charlesblc/p/6159187.html 另 ...

  7. 开源项目kcws代码分析--基于深度学习的分词技术

    http://blog.csdn.net/pirage/article/details/53424544 分词原理 本小节内容参考待字闺中的两篇博文: 97.5%准确率的深度学习中文分词(字嵌入+Bi ...

  8. 【机器学习基础】关于深度学习的Tips

    继续回到神经网络章节,上次只对模型进行了简要的介绍,以及做了一个Hello World的练习,这节主要是对当我们结果不好时具体该去做些什么呢?本节就总结一些在深度学习中一些基本的解决问题的办法. 为什 ...

  9. cocos2dx 之 android java 与 c++ 互相调用 代码(以百度定位为例子)

    在作cocosdx项目移植到android上时,预见各种头痛问题,今天首先就说说如何在 java 中调用c++ 代码. 这里就用百度定位为例吧,也是我项目中的一小块内容.首先,先百度一下 “百度定位s ...

随机推荐

  1. 使用FastReport打印二维码

    简单介绍一下该功能所在的项目背景:C#语言编写的WPF客户端应用程序,在“结账”模块中,打印出的收款小票上需要显示一个二维码,服务生拿着小票去找顾客,顾客可以选择现金.银行卡等普通支付方式,也可以直接 ...

  2. JavaScript OOP 之「创建对象」

    工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...

  3. poj 1251 Jungle Roads (最小生成树)

    poj   1251  Jungle Roads  (最小生成树) Link: http://poj.org/problem?id=1251 Jungle Roads Time Limit: 1000 ...

  4. 供销大集-JS修改

    aes("a123456") 1.搜索password 可以猜测 寻找匹配项 然后把密码 给t 2.也可以直接直接从这里往上,找到一个 encrypt函数下断点调试输出 funct ...

  5. beanstalkd 消息队列

    概况:Beanstalkd,一个高性能.轻量级的分布式内存队列系统,最初设计的目的是想通过后台异步执行耗时的任务来降低高容量Web应用系统的页面访问延迟,支持过有9.5 million用户的Faceb ...

  6. [教程]phpwind9.0应用开发基础教程

    这篇文章着重于介绍在9.0中如何开发一个插件应用的示例,step by step来了解下在9.0中一个基础的应用包是如何开发的.1.目录结构OK,首先是目录结构,下面是一个应用我们推荐的目录. 应用包 ...

  7. sql 触发器删除操作

    create trigger CheckDelete on 表 for delete as ) select @state=isnull(字段,'') from deleted if (@state& ...

  8. C++中new,delete和new[] ,delete[]的分析

    转载在这里 http://www.cnblogs.com/hazir/p/new_and_delete.html

  9. 北京培训记day5

    高级数据结构 一.左偏树&斜堆 orz黄源河论文 合并,插入,删除根节点 打标记 struct Node { int fa,l,r,w,dep } tree[Mx]; int Merge(in ...

  10. [UWP] 使用SemanticZoom控件

    在写一个看新闻软件的时候,用到了SemanticZoom控件,遇到了一些问题,比如如何根据首字母分类,以及放大视图中有数据的和没数据的通过背景色或前景色区分,幸运的是,all solved. 先来个效 ...