Huffman树与编码
带权路径最小的二叉树称为最优二叉树或Huffman(哈夫曼树)。
Huffman树的构造
将节点的权值存入数组中,由数组开始构造Huffman树。初始化指针数组,指针指向含有权值的孤立节点。
b = malloc(n*sizeof(BTreeNode));
for (i = 0; i < n; i++) {
b[i] = malloc(sizeof(BTreeNode));
b[i]->data = a[i];
b[i]->left = NULL;
b[i]->right = NULL;
}
数组b中的指针可以理解为二叉树的根指针。
进行n - 1次循环建立Huffman树
选择b中根节点权值最小的两棵二叉树作为左右子树组成新的二叉树,新二叉树的根节点权值为两颗二叉树根节点权值的和。
将新二叉树添加到b中,并从b中删除原来的两棵二叉树。当b中只有一棵树时终止循环。
int k1 = -1, k2;
for (j = 0; j < n; j++)
//让k1初始指向森林中第一棵树,k2指向第二棵
{
if (b[j] != NULL && k1 == -1)
{
k1 = j;
continue;
}
if (b[j] != NULL)
{
k2 = j;
break;
}
}
for (j = k2; j < n; j++)
//从当前森林中求出最小权值树和次最小权值树
{
if (b[j] != NULL)
{
if (b[j]->data < b[k1]->data)
{
k2 = k1;
k1 = j;
}
else if (b[j]->data < b[k2]->data)
k2 = j;
}
}
//由最小权值树和次最小权值树建立一棵新树,q指向树根结点
q = malloc(sizeof(BTreeNode));
q->data = b[k1]->data + b[k2]->data;
q->left = b[k1];
q->right = b[k2];
b[k1] = q;//将指向新树的指针赋给b指针数组中k1位置
b[k2] = NULL;//k2位置为空
Huffman编码与解码
首先给出求带权路径的递归实现:
double WeightPathLength(BTreeNode* FBT, int len) { //len = 0
if (FBT == NULL) {//空树返回0
return 0;
}
else
{
if (FBT->left == NULL && FBT->right == NULL)//访问到叶子结点
return FBT->data * len;
else //访问到非叶子结点,进行递归调用,返回左右子树的带权路径长度之和,len递增
return WeightPathLength(FBT->left,len+1)+WeightPathLength(FBT->right,len+1);
}
}
上述算法实际上通过双递归遍历了Huffman树。
改进上述算法得到求哈夫曼编码的实现:
static int index = 0;
char *c;
void HuffManCoding(FILE *fp, BTreeNode* FBT, int len)//len初始值为0
{
static int a[10];//定义静态数组a,保存每个叶子的编码,数组长度至少是树深度减一
if (FBT != NULL)//访问到叶子结点时输出其保存在数组a中的0和1序列编码
{
if (FBT->left == NULL && FBT->right == NULL)
{
int i;
fprintf(fp,"%c %d:",c[index++],FBT->data);
for (i = 0; i < len; i++)
fprintf(fp,"%d", a[i]);
fprintf(fp,"\n");
}
else//访问到非叶子结点时分别向左右子树递归调用,并把分支上的0、1编码保存到数组a
{ //的对应元素中,向下深入一层时len值增1
a[len] = 0;
HuffManCoding(fp, FBT->left, len + 1);
a[len] = 1;
HuffManCoding(fp, FBT->right, len + 1);
}
}
}
节点的Huffman编码由它在Huffman树中的位置决定。从根节点到任意节点有且仅有一条路径,且路径可以唯一确定节点。因此规定从左子结点经过编码为0,从右子结点经过编码为1,路径序列作为编码。
由Huffman树和Huffman编码的性质可知,Huffman编码是一种不等长编码。在构造过程中,两个权值较小的节点生成一棵新的二叉树,根节点的权值为左右子节点的和,并不实际代表字符。也就是说,较短的编码不可能是较长编码的前缀。
Huffman树从叶子到根构造,靠近根的字符节点权值与几个靠近叶子的节点权值和相近,故而靠近根的字符节点权值较高即编码较短。
解码过程可以由字符串匹配来完成:
//Decoding
for(i = 0; code[i]; i++) {
for (j = 0; j < n; j++) {
t = 1;
for (k = 0; coding[j][k]; k++) {
if (code[i + k] != coding[j][k]) {
t = 0;
break;
}
}
if (t == 1) {
append(out,c[j]);
i = i + k - 1;
break;
}
}
}
printf("%s\n",out);
//Huffman.c
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
typedef struct
{
int data;
struct BTreeNode* left;
struct BTreeNode* right;
}BTreeNode;
#define M 32
char coding[M][M];
BTreeNode* CreateHuffman(int a[], int n)
{
int i, j;
BTreeNode **b, *q;
b = malloc(n*sizeof(BTreeNode));
for (i = 0; i < n; i++) {
b[i] = malloc(sizeof(BTreeNode));
b[i]->data = a[i];
b[i]->left = NULL;
b[i]->right = NULL;
}
for (i = 1; i < n; i++)//进行 n-1 次循环建立哈夫曼树
{
int k1 = -1, k2;
for (j = 0; j < n; j++) {
if (b[j] != NULL && k1 == -1)
{
k1 = j;
continue;
}
if (b[j] != NULL)
{
k2 = j;
break;
}
}
for (j = k2; j < n; j++)//从当前森林中求出最小权值树和次最小
{
if (b[j] != NULL)
{
if (b[j]->data < b[k1]->data)
{
k2 = k1;
k1 = j;
}
else if (b[j]->data < b[k2]->data)
k2 = j;
}
}
q = malloc(sizeof(BTreeNode));
q->data = b[k1]->data + b[k2]->data;
q->left = b[k1];
q->right = b[k2];
b[k1] = q;
b[k2] = NULL;
}
free(b);
return q;
}
double WeightPathLength(BTreeNode* FBT, int len)//len初始为0
{
if (FBT == NULL) {
return 0;
}
else {
if (FBT->left == NULL && FBT->right == NULL) {
return FBT->data * len;
}
else {
return WeightPathLength(FBT->left,len+1)+WeightPathLength(FBT->right,len+1);
}
}
}
static int index = 0;
char *c;
void HuffManCoding(FILE *fp, BTreeNode* FBT, int len)//len初始值为0
{
static int a[10];
if (FBT != NULL) {
if (FBT->left == NULL && FBT->right == NULL) {
int i;
fprintf(fp,"%c %d:",c[index++],FBT->data);
for (i = 0; i < len; i++)
fprintf(fp,"%d", a[i]);
fprintf(fp,"\n");
}
else {
a[len] = 0;
HuffManCoding(fp, FBT->left, len + 1);
a[len] = 1;
HuffManCoding(fp, FBT->right, len + 1);
}
}
}
void append(char *str, char ch) {
int i;
for (i = 0; str[i];i++);
str[i] = ch;
str[i+1] = '\0';
}
int main()
{
int i, j, k, n, t;
int* arr;
char ch, in[M] = {'\0'}, code[M*M] = {'\0'}, out[M] = {'\0'};
BTreeNode* fbt;
FILE *fp;
//Input
freopen("test.in","r",stdin);
scanf("%d", &n);
arr = (int *)malloc(n * sizeof(int));
c = (char *)malloc(n * sizeof(char));
arr[0] = 186;
c[0] = ' ';
//原谅楼主这里偷懒,空格字符的输入有点麻烦所以直接写入了
for (i = 1; i < n; i++) {
getchar();
scanf("%c %d",&c[i],&arr[i]);
}
//huffman coding
fbt = CreateHuffman(arr, n);
fp = fopen("code.txt","w");
HuffManCoding(fp, fbt, 0);
fflush(fp);
//Encoding
fp = fopen("code.txt","r");
for (i = 0; i < n; i++) {
fgetc(fp);
fscanf(fp,"%c %d:%s", &t, &ch, &coding[i]);
}
fp = fopen("src.in","r");
fscanf(fp, "%s", in);
for (i = 0; in[i]; i++) {
for (j = 0; j < n; j++) {
if (c[j] == in[i]) {
strcat(code,coding[j]);
}
}
}
printf("%s\n",code);
//Decoding
for(i = 0; code[i]; i++) {
for (j = 0; j < n; j++) {
t = 1;
for (k = 0; coding[j][k]; k++) {
if (code[i + k] != coding[j][k]) {
t = 0;
break;
}
}
if (t == 1) {
append(out,c[j]);
i = i + k - 1;
break;
}
}
}
printf("%s\n",out);
return 0;
}
测试数据:
test.in:
27
a 4
b 13
c 22
d 32
e 103
f 21
g 15
h 47
i 57
j 1
k 5
l 32
m 20
n 57
o 63
p 15
q 1
r 48
s 51
t 80
u 23
v 8
w 18
x 1
y 16
z 1
Huffman树与编码的更多相关文章
- Huffman树的编码译码
上个学期做的课程设计,关于Huffman树的编码译码. 要求: 输入Huffman树各个叶结点的字符和权值,建立Huffman树并执行编码操作 输入一行仅由01组成的电文字符串,根据建立的Huffma ...
- Huffman树与编码的简单实现
好久没写代码了,这个是一个朋友问的要C实现,由于不会C,就用JAVA写了个简单的.注释掉的代码属性按照原来朋友发的题里带的参数,发现没什么用就给注释掉了. package other; import ...
- Huffman树进行编码和译码
//编码#include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> ...
- Huffman树及其编码(STL array实现)
这篇随笔主要是Huffman编码,构建哈夫曼树有各种各样的实现方法,如优先队列,数组构成的树等,但本质都是堆. 这里我用数组来存储数据,以堆的思想来构建一个哈弗曼树,并存入vector中,进而实现哈夫 ...
- Huffman树及其编解码
Huffman树--编解码 介绍: Huffman树可以根据输入的字符串中某个字符出现的次数来给某个字符设定一个权值,然后可以根据权值的大小给一个给定的字符串编码,或者对一串编码进行解码,可以用于 ...
- 构造数列Huffman树总耗费_蓝桥杯
快排! /** 问题描述 Huffman树在编码中有着广泛的应用.在这里,我们只关心Huffman树的构造过程. 给出一列数{pi}={p0, p1, …, pn-1},用这列数构造Huffman树的 ...
- Java蓝桥杯练习题——Huffman树
Huffman树在编码中有着广泛的应用.在这里,我们只关心Huffman树的构造过程. 给出一列数{pi}={p0, p1, -, pn-1},用这列数构造Huffman树的过程如下: 找到{pi}中 ...
- [数据结构与算法]哈夫曼(Huffman)树与哈夫曼编码
声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...
- huffman树即Huffma编码的实现
自己写的Huffman树生成与Huffman编码实现 (实现了核心功能 ,打出了每个字符的huffman编码 其他的懒得实现了,有兴趣的朋友可以自己在我的基础增加功能 ) /* 原创文章 转载请附上原 ...
随机推荐
- Windows 7 系统中开启 ASP.NET State Service 服务的方法
控制面板 -> 程序和功能 -> “打开或者关闭 Windows 功能”对话框 -> Internet 信息服务 -> 万维网服务 -> 应用程序开发功能 -> A ...
- C# 一些代码小结--UI操作
C# 一些代码小结--UI操作 使用控件名调用控件 object obj = this.GetType().GetField("控件名", System.Reflection.Bi ...
- FluentAPI详细用法
设置主键 modelBuilder.Entity<x>().HasKey(t => t.Name); 设置联合主键 modelBuilder.Entity<x>().Ha ...
- 【转】C#中Serializable序列化实例详解
这篇文章主要介绍了C#中Serializable序列化,以实例形式详细讲述了系列化的技术及各种序列化方法,非常具有实用价值,需要的朋友可以参考下 本文实例讲述了C#中Serializable序列化.分 ...
- Linux Shell常用脚本整理
轮询检测Apache状态并启用钉钉报警◆ #!/bin/bash shell_user="root" shell_domain="apache" shell_l ...
- iOS-项目开发1
FFPageControl 由于UIPageControl不能设置图片,而在实际开发中又经常遇到需要使用图片的情况,故仿照系统UIPageControl,重写了FFPageControl,以支持图片的 ...
- 文本属性和字体属性,超链接导航栏案例 background
文本属性 介绍几个常用的. 文本对齐 text-align 属性规定元素中的文本的水平对齐方式. 属性值:none | center | left | right | justify 文本颜色 col ...
- VS 快捷键设置
工具 --> 选项 --> 环境 --> 键盘
- .NET Core 从1.1升级到2.0记录(Cookie中间件踩坑)
.NET Core 2.0 新时代 万众瞩目的.NET Core 2.0终于发布了,原定于9.19的dotnetconf大会的发布时间大大提前了1个月,.NET Core 2.0/.NET Stand ...
- 学习推荐-Redis学习手册
redis之旅: http://www.cnblogs.com/stephen-liu74/archive/2012/02/27/2370212.html