Geometric Search
几何搜索
平衡搜索树(BST)在几何方面的应用,处理的内容变成几何对象,像点,矩形。
1d range search
先来看一维的情况,一维的范围搜索是后面的基础,处理的对象是在一条线上的点。这是符号表的一个小拓展,多了范围查找(range search) 和范围计数(range count)即希望知道给定范围上有哪些点或是有多少点。
用无序链表来实现的话,插入直接放开头,但是范围查找和范围计数都需要正比于 N 的时间。用有序数组来实现的话,范围计数的时间复杂度是 logN 级别,范围查找是 R+logN 级别(范围内有 R 个点),插入为了维护有序性需要的时间也和 N 成正比。所以说,高效的实现得用 BSTs,插入和范围计数的时间复杂度都是 logN,范围查找的则是 R+logN。
范围计数:

范围查找:

line segment intersection
接着我们到二维,设想有很多水平或垂直的线段,现在希望找到所有交点。

遍历检查所有可能组合会是平方级别的复杂度,显然是不可接受的,其实我们可以把问题转成上面一维的情况。

方便起见,这边的线段没有重合啥七七八八的情况。假想有一条垂直的线,从左扫到右,碰到水平线段的左端点就把该线段的 y 值放入 BST,碰到水平线段的右端点就把该线段的 y 值从 BST 中移除,碰到垂直线段就以该线段的上下端点为区间在 BST 中做范围计数。像上面的例图,点 2 已经从 BST 中移除了,点 4 是第一个垂直线段,范围查找发现有个点 1,也就发现了第一个交点。
kd trees
kd 树是 BSTs 的拓展(k 个维度),可以高效地处理空间中的点,十分灵活,在很多应用中很有用。就算不是几何问题,在数据库中你可能想知道收入在 1m - 10m 且年龄在 40 - 50 岁的人有哪些,这种场景也好用。
现在的例子正式从一维拓展到二维,范围查找和范围计数从区间上升到矩形,即希望知道平面上有哪些点或是有多少点在查询的矩形上。

一个可能的做法是把平面用网格划分,比较理想状况下是这样的:

点的分布比较均匀,每个网格可以对应一个链表来表示在其中的点。范围查找的时候就检查涉及到的网格,不用遍历整个平面,从而提高搜索效率。
M * M 的网格,M 太大会浪费空间,太小每个网格会有好多点,N 个点可以考虑设为 \(\sqrt []{N}\)。但是吧,对于几何数据,聚集(clustering)是一个很常见的现象,没法均匀地分布在网格上,比如像下面的地图数据:

所以说,网格划分不大适合我们的应用场景,经常会有好多点在一格,不然开好多小格又会浪费空间。但是,空间划分的想法是好的,我们可以用树结构类似的递归把空间分成两半两半。

树节点的键交替用 x,y 坐标,左右孩子还是原来那样一个小一个大,在平面上来看就是点的上下或左右。
应用方面,举了范围查找和搜索最近邻居两个例子。
range search in a 2d tree
在 x 节点比较横坐标选左右,在 y 节点比较纵坐标选择上下,就是二分吧,一次砍掉一半搜索空间。

第一次点 1 不在查询矩形里,接着发现矩形在左边,右子树马上整个不要;接着点 1 的左孩子点 3 也不在矩形里,但 y 坐标在区间里所以上下都要搜索;点 4 和点 1 一样,只要搜索左边;现在找到点 5 在矩形里,两个孩子为空结束搜索;继续返回搜索点 3 的另一边,点 6 也只要搜索左边,为空结束,至此完成整个搜索过程。
典型情况下,2d 树的时间复杂度为 R+logN (R 是在矩形中的点的个数),但是吧,最坏情况下,即使树是平衡的,复杂度也是 \(R+\sqrt []{N}\) (课程说相关证明超纲不提)。可是,对于很多实际应用来说,2d 树易于实现而且也值得一用。
nearest neighbor search in a 2d tree
搜索过程类似,每次选择查询点所在的一边,虽然最近的点也可能在另外一边,但是一般来说在同一边的概率大,所以这里采取这样的选择。

一路找下来,更新离查询点最近的距离和点。找到点 5 之后返回搜索点 4 的右边,为空继续返回搜索点 6 的右边,同样为空到了点 1 的右边。这里应该也可以有是否剪枝的判断,好像这次的编程作业就有这个,比如说现在点 5 到查询点的距离明显小于查询点到点 1 所在垂直红线的距离,那么点 1 的右子树就完全可以砍掉。
性能方面,典型情况是 logN,最坏情况是 N,我想了下,比如说点在圆上,然后查询点在圆心这样子。反正,一般来说,还是很高效的。
interval search trees
原来一维上的研究对象是点,现在再来看看一维下的区间(线段),问题是查找和给定区间有交集的区间。

还是用 BST 来表示,区间左端点为键(这里假定没有重复的左端点),同时在节点里保存后代最大的右端点。

插入新的节点的时候,通过比较左端点来找到合适位置,然后看看路径上最大右端点是否要更新。
查找的时候,节点有交集就直接返回(先说找到任一相交区间),不然就把查询区间左端点和左孩子的最大右端点比较,前者比较大就可以砍掉左子树;后者比较大就需要查找左子树。要注意的是,第二种情况下,左子树可能还是没有相交的区间,然后!这个时候的右子树也是不用搜索的。

要是查询区间在左子树没有相交区间,右端点最大的那个区间的左端点 c 肯定在前面,而右子树的左端点又比左子树的大,所以就像上图那样可以不用找右边了。
实现上,可以用红黑树来保证对数级别的性能,找到所有相交区间的复杂度是 RlogN,就一共有 R 个相交的区间这样。
retangle intersection
最后,把二维下的处理对象也升级为矩形,希望知道平面上矩形相交的个数。课程说这个有实际的需求,大概是用来检查电路板之类的,因为摩尔定律啊,平方级别的算法肯定是不行的。
算法和检查二维线段相交差不多,然后这边假定 x,y 坐标不重复。

类似的变成一维上的区间相交检测,在 N 个矩形查找 R 个相交的复杂度是 NlogN + RlogN。
最后的最后,贴张归纳:

Geometric Search的更多相关文章
- coursera课程Text Retrieval and Search Engines之Week 2 Overview
Week 2 OverviewHelp Center Week 2 On this page: Instructional Activities Time Goals and Objectives K ...
- [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法
二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...
- Leetcode 笔记 99 - Recover Binary Search Tree
题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...
- Leetcode 笔记 98 - Validate Binary Search Tree
题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...
- 基于WebGL 的3D呈现A* Search Algorithm
http://www.hightopo.com/demo/astar/astar.html 最近搞个游戏遇到最短路径的常规游戏问题,一时起兴基于HT for Web写了个A*算法的WebGL 3D呈现 ...
- Leetcode: Convert sorted list to binary search tree (No. 109)
Sept. 22, 2015 学一道算法题, 经常回顾一下. 第二次重温, 决定增加一些图片, 帮助自己记忆. 在网上找他人的资料, 不如自己动手. 把从底向上树的算法搞通俗一些. 先做一个例子: 9 ...
- [LeetCode] Closest Binary Search Tree Value II 最近的二分搜索树的值之二
Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...
- [LeetCode] Closest Binary Search Tree Value 最近的二分搜索树的值
Given a non-empty binary search tree and a target value, find the value in the BST that is closest t ...
- [LeetCode] Verify Preorder Sequence in Binary Search Tree 验证二叉搜索树的先序序列
Given an array of numbers, verify whether it is the correct preorder traversal sequence of a binary ...
随机推荐
- SpringMVC源码阅读:拦截器
1.前言 SpringMVC是目前J2EE平台的主流Web框架,不熟悉的园友可以看SpringMVC源码阅读入门,它交代了SpringMVC的基础知识和源码阅读的技巧 本文将通过源码(基于Spring ...
- c++中友元机制
友元的概念:遵循一定规则而使对象以外的软件系统能够不经过消息传递方式而直接访问对象内封装的数据成员的技术方法便是友元. 只要将外界的某个对象说明为一个类的友元,那么这个外界对象就可以访问这个类对象中的 ...
- Java SDK夯住(Hang)问题排查
夯住(Hang)是指程序仍在运行,卡在某个方法调用上,没有返回也没有异常抛出:卡住时间从几秒到几小时不等. Java程序发生Hang时,应该首先使用 jstack 把java进程的堆栈信息保存下来 , ...
- 【MongoDB学习-安装流程】
MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的. 支持的数据结构非常松散,是类似json的bjson格式,因此可以存储比较复杂的数据类型. ...
- 学习Memcached:2基本应用之控制台使用
1.首先新建一个控制台应用. 2.将下载好需要引用的Memcached的Dll导入进来. 3.前期准备工作就结束了,其实很简单,memcache的配置使用是挺简单.下面就是写代码了. using Me ...
- Java并发编程-Executor框架集
Executor框架集对线程调度进行了封装,将任务提交和任务执行解耦. 它提供了线程生命周期调度的所有方法,大大简化了线程调度和同步的门槛. Executor框架集的核心类图如下: 从上往下,可以很清 ...
- HDU4662(SummerTrainingDay03-B)
MU Puzzle Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- django admin登陆添加修改内容
model文件中 __all__ = ["Book", "Publisher", "Author"] from django.db impo ...
- BZOJ2957: 楼房重建(分块)
题意 题目链接 Sol 自己YY出了一个\(n \sqrt{n} \log n\)的辣鸡做法没想到还能过.. 可以直接对序列分块,我们记第\(i\)个位置的值为\(a[i] = \frac{H_i}{ ...
- h5新增加的存储方法
h4中使用的cookie把用户信息保存在客户端浏览器,但是它受到很多限制. 大小:最多能存储4k 带宽:它是随着http请求一起发送到服务器的,因此浪费一部分的带宽. 复杂度:操作复杂. h5新增加了 ...