题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1934

题目大意:

幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉。对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神。虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来意愿相反的票。我们定义一次投票的冲突数为好朋友之间发生冲突的总数加上和所有和自己本来意愿发生冲突的人数。 我们的问题就是,每位小朋友应该怎样投票,才能使冲突数最小?

解题思路:

转自:http://hzwer.com/2069.html

构建源S,汇T
然后S->一开始投同意的xpy,一开始投反对票的xpy ->T
流量均为1
然后对于一个朋友关系(a,b) 添加双向边,流量依然为1
最后割即为冲突数。
(1) 冲突数不大于 n:
很显然,哪怕所有xpy之间都存在朋友关系,xpy可以通过改变(或不改变)原先的决定到达全“同意”或全“否定”,那么朋友之间的冲突数为0,而未被自己先前决定的冲突数不大于n
(2) “同意”集合和“否定”集合之间的边全部是朋友关系
(3) 冲突是同意与不同意之间的割

按我的理解说一下,这样建图完毕后,为什么求的是S->T的最小割。

一、如果割掉S->i的边那说明这个小朋友违背了自己原本想睡觉的意愿,割掉i->T也是同理,冲突数+1.

二、如果割掉i->j即同意与不同意两个集合之间的边,则说明两好友意见不同,冲突数+1。

每个小朋友都要选择同意或者不同意,如果存在S->T的路径,说明有小朋友没有表态,这是不合法的,所以就是求S->T的最小割。

代码

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
#define LL long long
#define pii pair<int,int>
#define pll pair<long long,long long>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define per(i,a,b) for(int i=a;i>=b;i--)
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
#define bug cout<<"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"<<endl;
#define bugc(_) cout << (#_) << " = " << (_) << endl;
using namespace std;
const int N=1e6+;
const int M=1e6+;
const int INF=0x3f3f3f3f; struct node{
int to,next,flow;
}edge[M*]; int cnt,st,en;
int head[N],dep[N]; void init(){
cnt=;
memset(head,,sizeof(head));
} void link(int u,int v,int flow){
edge[cnt]=node{v,head[u],flow};
head[u]=cnt++;
edge[cnt]=node{u,head[v],};
head[v]=cnt++;
} int bfs(){
memset(dep,,sizeof(dep));
dep[st]=;
queue<int>q;
q.push(st);
while(!q.empty()){
int u=q.front();
q.pop();
for(int i=head[u];i;i=edge[i].next){
node t=edge[i];
if(t.flow&&!dep[t.to]){
dep[t.to]=dep[u]+;
q.push(t.to);
}
}
}
return dep[en];
} int dfs(int u,int fl){
if(u==en) return fl;
int tmp=;
for(int i=head[u];i&&fl;i=edge[i].next){
node &t=edge[i];
if(t.flow&&dep[t.to]==dep[u]+){
int x=dfs(t.to,min(t.flow,fl));
if(x>){
t.flow-=x;
edge[i^].flow+=x;
tmp+=x;
fl-=x;
}
}
}
if(!tmp) dep[u]=-;
return tmp;
} int dinic(){
int ans=;
while(bfs()){
while(int d=dfs(st,INF)){
ans+=d;
}
}
return ans;
} int main(){
int n,m;
while(~scanf("%d%d",&n,&m)){
init();
st=,en=n+;
for(int i=;i<=n;i++){
int x;
scanf("%d",&x);
if(x==)
link(st,i,);
else
link(i,en,);
}
for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
link(u,v,);
link(v,u,);
}
int ans=dinic();
printf("%d\n",ans);
}
return ;
}

BZOJ 1934 Vote 善意的投票(最小割+二分图)的更多相关文章

  1. BZOJ 1934: [Shoi2007]Vote 善意的投票 最小割

    1934: [Shoi2007]Vote 善意的投票 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  2. bzoj1934 Vote 善意的投票 最小割(最大匹配)

    题目传送门 题目大意:很多小朋友,每个小朋友都有自己的立场,赞成或者反对,如果投了和自己立场不同的票会得到一个能量.又有很多朋友关系,如果一个人和他的一个朋友投的票不同,也会得到一个能量,现在问,通过 ...

  3. 【BZOJ2768】[JLOI2010]冠军调查/【BZOJ1934】[Shoi2007]Vote 善意的投票 最小割

    [BZOJ2768][JLOI2010]冠军调查 Description 一年一度的欧洲足球冠军联赛已经进入了淘汰赛阶段.随着卫冕冠军巴萨罗那的淘汰,英超劲旅切尔西成为了头号热门.新浪体育最近在吉林教 ...

  4. 最小投票BZOJ 1934([Shoi2007]Vote 善意的投票-最小割)

    上班之余抽点时间出来写写博文,希望对新接触的朋友有帮助.今天在这里和大家一起学习一下最小投票 1934: [Shoi2007]Vote 好心的投票 Time Limit: 1 Sec Memory L ...

  5. 【bzoj2768/bzoj1934】[JLOI2010]冠军调查/[Shoi2007]Vote 善意的投票 最小割

    bzoj2768 题目描述 一年一度的欧洲足球冠军联赛已经进入了淘汰赛阶段.随着卫冕冠军巴萨罗那的淘汰,英超劲旅切尔西成为了头号热门.新浪体育最近在吉林教育学院进行了一次大规模的调查,调查的内容就是关 ...

  6. B1934 [Shoi2007]Vote 善意的投票 最小割

    一开始不太会,结果看完题解就是一个建图的网络流.然后就结了. 题干: 题目描述 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人 ...

  7. 【BZOJ】1934: [Shoi2007]Vote 善意的投票(网络流/-二分图匹配)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1934 一开始我想到了这是求最小割,但是我认为这题二分图可做,将1的放在左边,0的放在右边,然后朋友连 ...

  8. P2057 [SHOI2007]善意的投票 最小割

    $ \color{#0066ff}{ 题目描述 }$ 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照 ...

  9. P2057 善意的投票 最小割理解

    实现时这样建图:直接将S连向同意的人,T连向不同意的人,若两人是朋友,则在他们之间连一条双向边 #include<bits/stdc++.h> #define il inline usin ...

随机推荐

  1. join()方法跟踪

    #join方法跟踪java.lang.Thread.join() 进入线程的join方法,实际上线程thread是实现的 runnable接口 class Thread implements Runn ...

  2. CentOS下搭建Hadoop

    目录 安装配置jdk 安装Hadoop 下载解压 配置文件 启动hadoop 格式化HDFS 停止hdfs和yarn 参考:Hadoop官网文档 版本:hadoop-3.2.0 安装配置jdk 因ha ...

  3. Eclipse Job

    Job可以我们基于Eclipse的Java程序中,我们有很多种方式提供多任务的实现.熟悉Java的朋友立即会想到Java的Thread类,这是Java中使 用最多的一个实现多任务的类.Eclipse平 ...

  4. Jamie's Contact Groups POJ - 2289(多重匹配 最大值最小化 最大流)

    Jamie's Contact Groups Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 8567   Accepted: ...

  5. bzoj1038

    这是一道非常有意思的题目 Description 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安.我们将H村抽象为一维的轮廓.如下图所示 我们可以用一 ...

  6. 【agc002f】Leftmost Ball(动态规划)

    [agc002f]Leftmost Ball(动态规划) 题面 atcoder 洛谷 题解 我们从前往后依次把每个颜色按顺序来放,那么如果当前放的是某种颜色的第一个球,那么放的就会变成\(0\)号颜色 ...

  7. Maven添加第三方库及部署配置

    配置其实很简单,还是修改~/.m2/settings.xml文件,具体用文件说话,其他不解释. <?xml version="1.0" encoding="UTF- ...

  8. 51nod1462 树据结构(树链剖分+线段树)

    这题好久之前就被学长安利了...一直没写珍藏在收藏夹一个不为人知的角落233 这题怎么做...我们来数形结合,横坐标为$t_i$被加的次数(可看作时间$t$),纵坐标为$v_i$,那么$t_i$实际上 ...

  9. 【洛谷P1341】无序字母对

    题目大意:给定 n 个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有 n+1 个字母的字符串使得每个字母对都在这个字符串中出现. 题解:每个无需字母对可以看成无 ...

  10. Linux 磁盘自动挂载

    磁盘代号或者装置的Label 挂载点 档案系统格式 档案系统参数 是否用dump备份 是否用fsck检查扇区         0 0         1 1         2 2 下面来写一个代表的 ...