LOJ#6354. 「CodePlus 2018 4 月赛」最短路[最短路优化建图]
题意
一个 \(n\) 个点的完全图,两点之间的边权为 \((i\ xor\ j)*C\) ,同时有 \(m\) 条额外单向路径,问从 \(S\) 到 \(T\) 的最短路。
\(n\leq 10^5,\ m\leq 5\times 10^5,C\leq 100\).
分析
如果没有额外的边,会直接从 \(S\) 到 \(T\) ,因为如果每个二进制位 \(i\) 不同那么一定会有一步走 \((1<< i)*C\),
如果相同也没有必要多走几个点而可能多一部分路程。如果多了一些特殊边,最后的决策一定是从某个点直接到另一个点然后经过一条特殊边,再重复这个过程直到 \(T\).
按照这样的方式建图跑最短路就可以得到解,但是边数太多考虑优化建图。
发现 \(A \rightarrow B\) 可以写成 $A \rightarrow (A\ and\ B) \rightarrow B $,因为共有的部分不取贡献。
于是每个点只需要向最近的一层,也就是与之相差一个二进制位的点连边即可。边数 \(nlogn\) ,总时间复杂度为 \(O(nlogn)\) 。
代码
#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].lst,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=1e5 + 7;
int edc,n,C,A,B,m;
int head[N],vis[N],dis[N];
struct edge{
int lst,to,c;
edge(){}edge(int lst,int to,int c):lst(lst),to(to),c(c){}
}e[N*30];
void Add(int a,int b,int c){
e[++edc]=edge(head[a],b,c),head[a]=edc;
}
struct data{
int u,dis;
data(){}data(int u,int dis):u(u),dis(dis){}
bool operator <(const data &rhs)const{
return rhs.dis<dis;
}
};
priority_queue<data>Q;
void dijk(){
memset(dis,0x3f,sizeof dis);
dis[A]=0;
Q.push(data(A,dis[A]));
while(!Q.empty()){
int u=Q.top().u;Q.pop();
if(vis[u]) continue;vis[u]=1;
go(u)if(dis[u]+e[i].c<dis[v]){
dis[v]=dis[u]+e[i].c;
Q.push(data(v,dis[v]));
}
}
printf("%d\n",dis[B]);
}
int main(){
n=gi(),m=gi(),C=gi();
rep(i,1,n)
rep(j,0,17)if(i>>j&1) Add(i,i^(1<<j),(1<<j)*C),Add(i^(1<<j),i,(1<<j)*C);
rep(i,1,m){
int a=gi(),b=gi(),c=gi();
Add(a,b,c);
}
A=gi(),B=gi();
dijk();
return 0;
}
LOJ#6354. 「CodePlus 2018 4 月赛」最短路[最短路优化建图]的更多相关文章
- @loj - 6354@「CodePlus 2018 4 月赛」最短路
目录 @description@ @solution@ @accepted code@ @details@ @description@ 企鹅国中有 N 座城市,编号从 1 到 N . 对于任意的两座城 ...
- 【LibreOJ】#6354. 「CodePlus 2018 4 月赛」最短路 异或优化建图+Dijkstra
[题目]#6354. 「CodePlus 2018 4 月赛」最短路 [题意]给定n个点,m条带权有向边,任意两个点i和j还可以花费(i xor j)*C到达(C是给定的常数),求A到B的最短距离.\ ...
- @loj - 6353@「CodePlus 2018 4 月赛」组合数问题 2
目录 @description@ @solution@ @accepted code@ @details@ @description@ 请你找到 k 个不同的组合数,使得对于其中任何一个组合数 \(C ...
- loj #6302. 「CodePlus 2018 3 月赛」寻找车位【线段树+单调队列】
考虑静态怎么做:枚举右边界,然后枚举上边界,对应的下边界一定单调不降,单调栈维护每一列从当前枚举的右边界向左最长空位的长度,这样是O(nm)的 注意到n>=m,所以m<=2000,可以枚举 ...
- [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞
[LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞 试题描述 到河北省 见斯大林 / 在月光下 你的背影 / 让我们一起跳舞吧 うそだよ~ 河北省怎么可能有 Stalin. ...
- loj #6250. 「CodePlus 2017 11 月赛」找爸爸
#6250. 「CodePlus 2017 11 月赛」找爸爸 题目描述 小 A 最近一直在找自己的爸爸,用什么办法呢,就是 DNA 比对. 小 A 有一套自己的 DNA 序列比较方法,其最终目标是最 ...
- [LOJ 6249]「CodePlus 2017 11 月赛」汀博尔
Description 有 n 棵树,初始时每棵树的高度为 H_i,第 i 棵树每月都会长高 A_i.现在有个木料长度总量为 S 的订单,客户要求每块木料的长度不能小于 L,而且木料必须是整棵树(即不 ...
- [LOJ 6248]「CodePlus 2017 11 月赛」晨跑
Description “无体育,不清华”.“每天锻炼一小时,健康工作五十年,幸福生活一辈子” 在清华,体育运动绝对是同学们生活中不可或缺的一部分.为了响应学校的号召,模范好学生王队长决定坚持晨跑.不 ...
- loj6300 「CodePlus 2018 3 月赛」博弈论与概率统计
link 题意: A和B玩游戏,每轮A赢的概率为p.现在有T组询问,已知A赢了n轮输了m轮,没有平局,赢一局A得分+1,输一局得分-1,问A得分期望值? $n+m,T\leq 2.5\times 10 ...
随机推荐
- SQL Server存储过程输入参数使用表值
转载自:http://blog.csdn.net/smithliu328/article/details/9996149 在2008之前如果我们想要将表作为输入参数传递给SQL Server存储过程使 ...
- [WPF]启动参数
在App.xaml.cs中重写方法OnStartup protected override void OnStartup(StartupEventArgs e) { //e.Args为命令行参数 // ...
- 关于服务器端的Json文件的接收,踩了一早上的坑的问题
JSON文件的发送和接收 服务器端接收的JSON文件也是String型的文件,因此不可以直接写成如下的格式,此错误格式下无法找到发送的{}内的数据,服务器会报错提示无法找到你需要的类型数据,也就是根本 ...
- Windows Server 2012上安装.NET Framework 3.5
引用:https://jingyan.baidu.com/article/14bd256e26b714bb6d26128a.html 装不成功后网上搜到很多相同的问题,都尝试过没解决到 用PowerS ...
- .Net使用163smtp发送邮件时错误:邮箱不可用. has no permission解决方法
C#实现简单邮件发送代码如下 public static void SendAsync(string emailTo, string subject, string mailBody) { var m ...
- 死磕nginx系列--使用nginx做cache服务
配置文件 nginx.conf 主配置文件 worker_processes 1; events { worker_connections 1024; } http { include mime.ty ...
- C++的技术探究
C++深究 函数指针 double pam(int, double); // prototype double (*pf)(int, double); // declare function poin ...
- PReLU与ReLU
PReLU激活函数,方法来自于何凯明paper <Delving Deep into Rectifiers:Surpassing Human-Level Performance on Image ...
- OpenCV——模板匹配
minMaxLoc函数: void minMaxLoc( const Mat& src, double* minVal, double* maxVal=0, Point* minLoc=0, ...
- win10家庭版安装DockerToolbox-18.03.0-ce
下载DockerToolbox-18.03.0-ce.exe https://mirrors.aliyun.com/docker-toolbox/windows/docker-toolbox/ 点击安 ...