[HZNOI #514] Magic

题意

给定一个 \(n\) 个点 \(m\) 条边的有向图, 每个点有两个权值 \(a_i\) 和 \(b_i\), 可以以 \(b_i\) 的花费把第 \(i\) 个点的 \(a_i\) 变成 \(0\). 最后每个点 \(i\) 产生的花费为所有从 \(i\) 出发能通过一条有向边直接到达的点 \(j\) 的 \(a_j\) 的 \(\max\). 最小化这个过程中的总花费.

\(n\le 1000,m\le50000\)

题解

一点都不套路的最小割.

果然我是不会网络流的.

对于每个点, 如果将它的邻接点按照 \(a_j\) 降序排序的话, 不难发现必然要干掉一个前缀的所有 \(a_j\) 才能让这个点在最后统计的时候产生的花费变小. 但是多次干掉同一个点不能重复计算花费.

那么我们一点都不自然地想到最小割. 先把所有点拆成两个, 一个负责计算最终统计时的花费 (A类点), 一个负责计算被干掉的时候产生的花费 (B类点). 被干掉的时候产生的花费直接连一条流量为 \(b_i\) 的边到 \(t\) 就可以了. 最终统计时的花费先从 \(s\) 连一条 \(\infty\) 边到当前点, 然后按照 \(a_j\) 降序拉出一条链来, 链上的每个点代表一条边, 权值为这条边到达的点的 \(a_j\). 然后再从链上的每个点连一条 \(\infty\) 边到 \(j\) 对应的点. 这样的话如果 \(s\verb|-|t\) 被割断, 那么对于每一个 A 类点, 后面必然是割掉了某个 \(a_j\), 同时所有大于被割断的 \(a_j\) 的边邻接的点必然都已经被割掉了 \(b_i\).

建图Dinic就可以了.

这个拉链然后最小割的套路依然没有学会...果然我还是太菜了QAQ...

什么你问我 \(n+m\) 个点Dinic怎么跑过去的? 我怎么知道?Dinic的运行速度大概都是靠信仰吧...

恋恋世界第一!

参考代码

#include <bits/stdc++.h>

const int MAXV=1e5+10;
const int MAXE=5e6+10;
const int INF=0x7FFFFFFF; struct Edge{
int from;
int to;
int flow;
Edge* rev;
Edge* next;
};
Edge E[MAXE];
Edge* head[MAXV];
Edge* cur[MAXV];
Edge* top=E; int v;
int e;
int a[1010];
int b[1010];
int depth[MAXV];
std::vector<int> link[1010]; bool BFS(int,int);
int Dinic(int,int);
int DFS(int,int,int);
void Insert(int,int,int); int main(){
freopen("magic.in","r",stdin);
freopen("magic.out","w",stdout);
scanf("%d%d",&v,&e);
for(int i=1;i<=v;i++)
scanf("%d",a+i);
for(int i=1;i<=v;i++)
scanf("%d",b+i);
for(int i=0;i<e;i++){
int a,b;
scanf("%d%d",&a,&b);
link[a].push_back(b);
}
for(int i=1;i<=v;i++)
std::sort(link[i].begin(),link[i].end(),[](int a,int b){return ::a[a]>::a[b];});
int s=0,t=1,cnt=v*2+1;
for(int i=1;i<=v;i++){
Insert(s,i+1,INF);
Insert(i+v+1,t,b[i]);
int last=i+1;
for(size_t j=0;j<link[i].size();j++){
++cnt;
Insert(cnt,v+link[i][j]+1,INF);
Insert(last,cnt,a[link[i][j]]);
last=cnt;
}
}
printf("%d\n",Dinic(s,t));
return 0;
} int Dinic(int s,int t){
int ans=0;
while(BFS(s,t))
ans+=DFS(s,INF,t);
return ans;
} bool BFS(int s,int t){
memset(depth,0,sizeof(depth));
std::queue<int> q;
q.push(s);
depth[s]=1;
cur[s]=head[s];
while(!q.empty()){
s=q.front();
q.pop();
for(Edge* i=head[s];i!=NULL;i=i->next){
if(i->flow>0&&depth[i->to]==0){
depth[i->to]=depth[s]+1;
cur[i->to]=head[i->to];
if(i->to==t)
return true;
q.push(i->to);
}
}
}
return false;
} int DFS(int s,int flow,int t){
if(s==t||flow<=0)
return flow;
int rest=flow;
for(Edge*& i=cur[s];i!=NULL;i=i->next){
if(i->flow>0&&depth[i->to]==depth[s]+1){
int tmp=DFS(i->to,std::min(rest,i->flow),t);
if(tmp<=0)
depth[i->to]=0;
rest-=tmp;
i->flow-=tmp;
i->rev->flow+=tmp;
if(rest<=0)
break;
}
}
return flow-rest;
} inline void Insert(int from,int to,int flow){
top->from=from;
top->to=to;
top->flow=flow;
top->rev=top+1;
top->next=head[from];
head[from]=top++; top->from=to;
top->to=from;
top->flow=0;
top->rev=top-1;
top->next=head[to];
head[to]=top++;
}

[HZNOI #koishi] Magic的更多相关文章

  1. Codeforces CF#628 Education 8 D. Magic Numbers

    D. Magic Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  2. [8.3] Magic Index

    A magic index in an array A[0...n-1] is defined to be an index such that A[i] = i. Given a sorted ar ...

  3. Python魔术方法-Magic Method

    介绍 在Python中,所有以"__"双下划线包起来的方法,都统称为"Magic Method",例如类的初始化方法 __init__ ,Python中所有的魔 ...

  4. 【Codeforces717F】Heroes of Making Magic III 线段树 + 找规律

    F. Heroes of Making Magic III time limit per test:3 seconds memory limit per test:256 megabytes inpu ...

  5. 2016中国大学生程序设计竞赛 - 网络选拔赛 C. Magic boy Bi Luo with his excited tree

    Magic boy Bi Luo with his excited tree Problem Description Bi Luo is a magic boy, he also has a migi ...

  6. 一个快速double转int的方法(利用magic number)

    代码: int i = *reinterpret_cast<int*>(&(d += 6755399441055744.0)); 知识点: 1.reinterpret_cast&l ...

  7. MAGIC XPA最新版本Magic xpa 2.4c Release Notes

    New Features, Feature Enhancements and Behavior ChangesSubforms – Behavior Change for Unsupported Ta ...

  8. Magic xpa 2.5发布 Magic xpa 2.5 Release Notes

    Magic xpa 2.5發佈 Magic xpa 2.5 Release Notes Magic xpa 2.5 Release NotesNew Features, Feature Enhance ...

  9. How Spring Boot Autoconfiguration Magic Works--转

    原文地址:https://dzone.com/articles/how-springboot-autoconfiguration-magic-works In my previous post &qu ...

随机推荐

  1. 【转】CSS和SVG中的剪切——clip-path属性和<clipPath>元素

    本文由大漠根据SaraSoueidan的<Clipping in CSS and SVG – The clip-path Property and <clipPath> Elemen ...

  2. Stack源码解析

    我们从一个DEMO作为入口,了解Java的Stack的源码,代码如: Stack<String> stack = new Stack<>(); stack.push(" ...

  3. Three.js开发指南---粒子和粒子系统(第七章)

    使用粒子可以很容易的创建很多细小的物体,例如雨滴雪花等 本章主要内容: 1 使用ParticleBasicMaterial(基础粒子材质)来创建和设计粒子 2 使用ParticleSystem来创建一 ...

  4. HDU2167(SummerTrainingDay02-D 状态压缩dp)

    Pebbles Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  5. POJ3186(KB12-O DP)

    Treats for the Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5801   Accepted: 30 ...

  6. OSGI企业应用开发(十)整合Spring和Mybatis框架(三)

    上篇文章中,我们已经完成了OSGI应用中Spring和Mybatis框架的整合,本文就来介绍一下,如何在其他Bundle中,使用Mybatis框架来操作数据库. 为了方便演示,我们新建一个新的Plug ...

  7. 【element】改变el-table样式,实现全局滚动,固定表头和表尾

      后台管理系统,多半都有表格,数据量大的时候,需要固定表头或者底部. 因为饿了么是局部滚动的,现在我们需要改饿了么某些样式实现全局滚动 饿了么局部滚动 全局滚动demo 删除height=200 固 ...

  8. JavaScript写计算器

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. 网络基础 HTTP协议之http url简介

    HTTP协议之http url简介 by:授客 QQ:1033553122 http url简介 http url通过http协议,用于定位网络资源,是一种特殊类型的URI(统一资源定位) http_ ...

  10. 单元测试(一)-NUnit基础

    单元测试作为提高代码和软件质量的有效途径,其重要性和益处自不必多说,虽然我没有实践过TDD之类,但坚信单元测试的积极作用.作为一种开发方法,单元测试早在上世纪70年代就已经在Smalltalk语言被运 ...