分析:

最小割,不选则割的建模题...(然而一开始我当成了费用流,简直丧心病狂...最后想到了最小割...)

对于条件一,直接建一条双向边就可以了,并且不计入sum中,因为这是作为费用的存在,让它跑出来就可以了,不要考虑太多的。对于条件二,建一个点,分别连向{S}牧场,流量为inf,并且如果是0的话,连接S,如果是1的话,连接T。

附上代码:

#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <iostream>
#include <queue>
#include <cstdlib>
using namespace std;
#define N 15005
#define S 0
#define T 15001
int head[N],cnt,dep[N],n,m,k;long long sum;
struct node
{
int to,next,val;
}e[1000010];
void add(int x,int y,int z){e[cnt].to=y;e[cnt].next=head[x];e[cnt].val=z;head[x]=cnt++;}
void insert(int x,int y,int z){add(x,y,z);add(y,x,0);}
int bfs()
{
memset(dep,-1,sizeof(dep));
queue <int>q;while(!q.empty())q.pop();q.push(S);dep[S]=1;
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=head[x];i!=-1;i=e[i].next)
{
int to1=e[i].to;
if(dep[to1]==-1&&e[i].val)dep[to1]=dep[x]+1,q.push(to1);
}
}
return dep[T]==-1?0:1;
}
int dfs(int x,int maxf)
{
if(x==T)return maxf;
int tflow=maxf,nowf;
for(int i=head[x];i!=-1;i=e[i].next)
{
int to1=e[i].to;
if(dep[to1]==dep[x]+1&&e[i].val)
{
nowf=dfs(to1,min(e[i].val,tflow));
if(!nowf)dep[to1]=-1;
tflow-=nowf,e[i].val-=nowf,e[i^1].val+=nowf;
if(!tflow)break;
}
}
return maxf-tflow;
}
int main()
{
memset(head,-1,sizeof(head));
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=n;i++)
{
int x;
scanf("%d",&x);sum+=x;
insert(S,i,x);
}
for(int i=1;i<=n;i++)
{
int x;
scanf("%d",&x);sum+=x;
insert(i,T,x);
}
for(int i=1;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
insert(x,y,z);insert(y,x,z);
}
for(int i=1;i<=k;i++)
{
int x,y,z,v;scanf("%d%d%d",&x,&y,&z);sum+=z;
if(y==0)
{
insert(S,i+n,z);
while(x--){scanf("%d",&v);insert(i+n,v,1<<30);}
}else
{
insert(i+n,T,z);
while(x--){scanf("%d",&v);insert(v,i+n,1<<30);}
}
}
long long ans=0;
while(bfs())ans+=dfs(S,1<<30);
printf("%lld\n",sum-ans);
return 0;
}

  

Mike的农场 BZOJ4177的更多相关文章

  1. 【BZOJ4177】Mike的农场 最小割

    [BZOJ4177]Mike的农场 Description Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中 ...

  2. bzoj4177: Mike的农场

    类似于最大权闭合图的思想. #include<cstdio> #include<cstring> #include<iostream> #include<al ...

  3. BZOJ 4177: Mike的农场( 最小割 )

    显然是最小割... 对于规律(i, j, k) i,j 互相连边, 容量为k 对于规则(S, a, b) 新建一个点x, x与S中每个点连一条弧, 容量+∞, 然后再根据a决定x与源点或汇点连边. 跑 ...

  4. bzoj 4177 Mike的农场

    bzoj 4177 Mike的农场 思维有些江化了,一上来就想费用流做法,但其实就是个最小割啊. 考虑先将所有的收益拿到,再减去不能拿的以及三元组 \((i,j,k)\) 产生的代价.即,先让 \(a ...

  5. 【bzoj4177】Mike的农场 网络流最小割

    题目描述 Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中第i个牲畜围栏中的动物长大后,每只牛可以卖a[i] ...

  6. Mike的农场

    题目 Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中第i个牲畜围栏中的动物长大后,每只牛可以卖a[i]元, ...

  7. Mike的农场 (BZOJ 4177)

    题目大意: 给N个东西分AB类,分到A类和B类分别得到相应的钱记为A[i],B[i],然后有一些冲突关系<x,y,z>,如果物品x,y不同类需要付出z的钱.还有一些外快<S,x,y& ...

  8. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  9. 2015湖南省选集训DAY5——work(BZOJ4177)

    Description Mike有一个农场,这个农场n个牲畜围栏,如今他想在每一个牲畜围栏中养一仅仅动物,每仅仅动物能够是牛或羊,并且每一个牲畜围栏中的饲养条件都不同,当中第i个牲畜围栏中的动物长大后 ...

随机推荐

  1. SQLServer 学习笔记之超详细基础SQL语句 Part 5

    Sqlserver 学习笔记 by:授客 QQ:1033553122 -----------------------接Part 4------------------- 21使用默认 默认(也称默认值 ...

  2. MVC与单元测试实践之健身网站(一)-项目概述

    前不久刚刚通过租房网站的开发学习了MVC,并随后学习了单元测试相关的基础,现在开始健身网站的开发,该项目将结合MVC与单元测试,在开发实践过程中,趁热打铁,巩固并运用之前的内容. 一 健身网站功能描述 ...

  3. memcached 查看所有的key

    1. cmd上登录memcache   1 > telnet 127.0.0.1 11211 2. 列出所有keys   1 2 3 4 stats items // 这条是命令 STAT it ...

  4. 什么是 Azure 中的虚拟机规模集?

    虚拟机规模集是一种 Azure 计算资源,可用于部署和管理一组相同的 VM. 由于所有 VM 的配置都相同,因此无需对 VM 进行任何预先配置. 这样就可以更方便地构建面向大型计算.大数据.容器化工作 ...

  5. Oracle EBS OPM reshedule batch

    --reschedule_batch --created by jenrry DECLARE x_message_count NUMBER; x_message_list VARCHAR2 (2000 ...

  6. [Synology] [群晖] 关闭被占用的文件

    1. Control Panel: Control Panel > Terminal & SNMP Enable SSH service 2. SSH into Synology 3. ...

  7. HTTP的cookie

    HTTP cookies,通常又称作"cookies",已经存在了很长时间,但是仍旧没有被予以充分的理解.首要的问题是存在了诸多误区,认为cookies是后门程序或病毒,或压根不知 ...

  8. 华为MSTP负载均衡配置示例

    以下内容摘自由华为公司授权并审核通过,今年元月刚刚出版上市的<华为交换机学习指南>一书:http://item.jd.com/11355972.html,http://product.da ...

  9. Rafy框架

    l  什么是Rafy框架? -------- Rafy 是一个面向企业级开发的插件化快速开发框架. l  Rafy的优点是什么? ------快速开发.产品线工程.一套代码可同时生成并运行 C/S.单 ...

  10. easyui学习笔记14-拓展的基本验证规则

    /** * 扩展的基本校验规则, */ $.extend($.fn.validatebox.defaults.rules, { minLength : { // 判断最小长度 validator : ...