设最后的组成为x=x0a+x1b,y=y0a+y1b。那么容易发现x0和y0奇偶性相同、x1和y1奇偶性相同。于是考虑奇偶两种情况,问题就变为是否存在x和y使ax+by=c,那么其充要条件是gcd(a,b)|c。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
bool check(int a,int b,long long x,long long y)
{
if (x&) return ;
if (y&) return ;
x>>=,y>>=;
int n=gcd(a,b);
return x%n==&&y%n==;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2299.in","r",stdin);
freopen("bzoj2299.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
int T=read();
while (T--)
{
int a=read(),b=read();long long x=read(),y=read();
if (check(a,b,x,y)||check(a,b,x-a,y-b)||check(a,b,x-b,y-a)||check(a,b,x-a-b,y-a-b)) printf("Y\n");
else printf("N\n");
}
return ;
}

BZOJ2299 HAOI2011向量(数论)的更多相关文章

  1. BZOJ2299 [HAOI2011]向量 【裴蜀定理】

    题目链接 BZOJ2299 题解 题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\) 显然我们就可以得到一对四元方程组,用裴蜀定理判断 ...

  2. BZOJ2299: [HAOI2011]向量

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2299 题解:乱搞就可以了... 不妨认为有用的只有(a,b)(a,-b)(b,a)(b,-a) ...

  3. 【BZOJ2299】[HAOI2011]向量(数论)

    [BZOJ2299][HAOI2011]向量(数论) 题面 BZOJ 洛谷 题解 首先如果我们的向量的系数假装可以是负数,那么不难发现真正有用的向量只有\(4\)个,我们把它列出来.\((a,b)(a ...

  4. 【BZOJ-2299】向量 裴蜀定理 + 最大公约数

    2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1118  Solved: 488[Submit][Status] ...

  5. 【BZOJ 2299】 2299: [HAOI2011]向量 (乱搞)

    2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1255  Solved: 575 Description 给你一 ...

  6. P2520 [HAOI2011]向量

    题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...

  7. [HAOI2011]向量

    题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...

  8. luogu P2520 [HAOI2011]向量

    传送门 一堆人说数论只会gcd,我连gcd都不会,菜死算了qwq Orzyyb 这题欺负我数学不好qwq 首先可以发现实际上有如下操作:x或y±2a,x或y±2b,x+a y+b,x+b y+a(后面 ...

  9. 【[HAOI2011]向量】

    靠瞎猜的数学题 首先我们先对这些向量进行一顿组合,会发现\((a,b)(a,-b)\)可以组合成\((2a,0)\),\((b,-a)(b,a)\)可以组合成\((2b,0)\),同理\((0,2a) ...

随机推荐

  1. golang postgresql CRUD

    package main import ( "database/sql" "fmt" "log" _ "github.com/li ...

  2. 20155216 Exp6 信息搜集与漏洞扫描

    Exp6 信息搜集与漏洞扫描 实践内容 信息搜集 whois查询 使用whois查询域名注册信息,查询百度服务器(进行whois查询时去掉www等前缀,因为注册域名时通常会注册一个上层域名,子域名由自 ...

  3. 汇编 REPE/REPZ 指令,CMPSB指令

    知识点: REPE/REPZ 指令 CMPSB 指令 一.CMPSB //cmp //sub //SCASB//scasw//scasd cmp byte ptr [edi],al //对标志位的 ...

  4. W25Q128---读写

    占坑! 总结:通信方式是SPI,读数据可以从任何地方读,写数据和擦出数据需要按照页或者扇区或者簇为单位进行. 写数据:一次最多写一页,如果超出一页数据长度,则分几次完成.例如本芯片一个扇区为4096个 ...

  5. [Deep-Learning-with-Python]基于Kears的Reuters新闻分类

    Reuters数据集下载速度慢,可以在我的repo库中找到下载,下载后放到~/.keras/datasets/目录下,即可正常运行. 构建神经网络将路透社新闻分类,一共有46个类别.因为有多个类别,属 ...

  6. centos 6.5 搭建开源堡垒机 Teleport 遇到的问题解决

    几款开源的堡垒机 下面进行 teleport 的安装: https://docs.tp4a.com/install/#11 异常1:libc.so.6: version `GLIBC_2.14' no ...

  7. JavaScript快速入门-ECMAScript本地对象(RexExp)

    一.概述 RegExp 对象表示正则表达式,它是对字符串执行模式匹配的强大工具. 正则表达式是由一个字符序列形成的搜索模式. 当你在文本中搜索数据时,你可以用搜索模式来描述你要查询的内容. 正则表达式 ...

  8. okhttp3.4.1+retrofit2.1.0实现离线缓存

    关于Retrofit+OkHttp的强大这里就不多说了,还没了解的同学可以自行去百度.这篇文章主要讲如何利用Retrofit+OkHttp来实现一个较为简单的缓存策略:即有网环境下我们请求数据时,如果 ...

  9. JQ_返回顶部

    $(function(){ $('#goto_top_btn').click(function() {var s = $(window).scrollTop(),h = $(window).heigh ...

  10. 计算机基础知识 一 Basic knowledge of computers One

    计算机硬件由CPU(Central Processing Unit).存储器.输入设备.输出设备组成. CPU通常由控制单元(控制器)和算数逻辑单元(运算器)组成. 运算器:负责进行算数运算和逻辑运算 ...