[Usaco2005 Jan]Sumsets 求和
Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7: 1) 1+1+1+1+1+1+1 2) 1+1+1+1+1+2 3) 1+1+1+2+2 4) 1+1+1+4 5) 1+2+2+2 6) 1+2+4 Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
给出一个N(1≤N≤10^6),使用一些2的若干次幂的数相加来求之.问有多少种方法
Input
一个整数N.
Output
方法数.这个数可能很大,请输出其在十进制下的最后9位.
Sample Input
7
Sample Output
6
HINT
- 1+1+1+1+1+1+1
- 1+1+1+1+1+2
- 1+1+1+2+2
- 1+1+1+4
- 1+2+2+2
- 1+2+4
考虑到n不大,所以我们可以直接用完全背包,复杂度应该是\(O(n\ln n)\)级别
其实发现奇数只能通过偶数+1得到,而偶数可以通过奇数+1,也可以通过其折半的偶数翻倍得来,因此得到方程
\]
复杂度\(O(n)\)
/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
int x=0,f=1;char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline int read(){
int x=0,f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
const int N=1e6,p=1e9;
int f[N+10];
int main(){
int n=frd(); f[0]=1;
for (register int i=1;i<=n;i+=2) f[i]=f[i-1],f[i+1]=(f[i]+f[(i+1)>>1])%p;
printf("%d\n",f[n]);
return 0;
}
[Usaco2005 Jan]Sumsets 求和的更多相关文章
- BZOJ1677: [Usaco2005 Jan]Sumsets 求和
1677: [Usaco2005 Jan]Sumsets 求和 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 570 Solved: 310[Submi ...
- BZOJ 1677: [Usaco2005 Jan]Sumsets 求和( dp )
完全背包.. --------------------------------------------------------------------------------------- #incl ...
- BZOJ 1677: [Usaco2005 Jan]Sumsets 求和
题目 1677: [Usaco2005 Jan]Sumsets 求和 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 617 Solved: 344[Su ...
- 1677: [Usaco2005 Jan]Sumsets 求和
1677: [Usaco2005 Jan]Sumsets 求和 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 626 Solved: 348[Submi ...
- 【BZOJ1677】[Usaco2005 Jan]Sumsets 求和 递推
... #include <iostream> using namespace std; ]; int n,i; int main() { cin>>n; f[]=; ;i&l ...
- 【BZOJ】1677: [Usaco2005 Jan]Sumsets 求和(dp/规律)
http://www.lydsy.com/JudgeOnline/problem.php?id=1677 完全背包很容易想到,将1,2,4...等作为物品容量即可. 然后这题还有一个递推式 f[i]= ...
- BZOJ 1677 [Usaco2005 Jan]Sumsets 求和:dp 无限背包 / 递推【2的幂次方之和】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1677 题意: 给定n(n <= 10^6),将n分解为2的幂次方之和,问你有多少种方 ...
- bzoj 1677: [Usaco2005 Jan]Sumsets 求和【dp】
设f[i]为i的方案数,f[1]=1,考虑转移,如果是奇数,那么就是f[i]=f[i-1]因为这1一定要加:否则f[i]=f[i-1]+f[i>>1],就是上一位+1或者i/2位所有因子乘 ...
- BZOJ1679: [Usaco2005 Jan]Moo Volume 牛的呼声
1679: [Usaco2005 Jan]Moo Volume 牛的呼声 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 723 Solved: 346[ ...
随机推荐
- [转] OracleDataReader.Read()是否有值
TongYu2009的原文地址 当你执行一次OracleDataReader.Read()是Bool型),注意是只读取一个!如果你的Select语句执行结果是空,或者所有的结果都已经读取完了则Orac ...
- 获取鼠标位置的几个通用的JS函数
原文:http://www.open-open.com/code/view/1421401009218 /*两个通用函数,用于获取鼠标相对于整个页面的当前位置*/ function getX(e) { ...
- c++多线程编程:常见面试题
题目:子线程循环 10 次,接着主线程循环 100 次,接着又回到子线程循环 10 次,接着再回到主线程又循环 100 次,如此循环50次,试写出代码 子线程与主线程必有一个满足条件(flag == ...
- 改动Android启动画面
一.Android的启动步骤 1.启动Linux 2.载入Android 3.显示Android桌面 二.分析 Android载入开机动画的源代码文件是: /opt/android4.3/framew ...
- HTML的简单学习
<html>与</html>之间的部分用来描述网页. <body>与</body>之间是页面的可见的内容. <h1>与</h1> ...
- 【转载】在VS2008中使用WSE 3.0过程全记录
WSE全称是Web Service Enhancement,提供了更好的安全性实现,以及大对象传输的设计. 有关WSE的一些介绍,如果不清楚,可以参考下面的链接 官方介绍:http://www.mic ...
- mac WebStorm 破解
摘要:因为想要学习HTML所以需要一个工具,同事推荐了webstorm.下载以后再网上搜破解方法.搜索到一个很简单的. 一.下载链接https://www.jetbrains.com/webstorm ...
- Thinking in Java -- 类型信息RTTI
Thinking in Java – 类型信息 个人感觉 java 中的比較难的部分了,在看了些netty源代码发现事实上这块很实用. 这章重点是RTTI和反射.先说下自己的理解 RTTI是执行时识别 ...
- Chapter1-data access reloaded:Entity Framework(下)
1.4 Delving deep into object/relational differences 深入挖掘对象关系的不同 理解面向对象和关系世界的不同是重要的,因为他会影响你设计一个对象模型或者 ...
- while语句字符串的基本操作
1,编码:对现在通用文字编码成计算机文字,便于储存,传递,交流. 最早的计算机编码是ACSII美国人创建的,包含英文字母,数字,以及特殊符号.总共是128个码位:2**7,因为计算机的底层只能识别:& ...