Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 1930  Solved: 823
[Submit][Status][Discuss]

Description

Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务。于是,FJ必须为此向电信公司支付一定的费用。 FJ的农场周围分布着N(1 <= N <= 1,000)根按1..N顺次编号的废弃的电话线杆,任意两根电话线杆间都没有电话线相连。一共P(1 <= P <= 10,000)对电话线杆间可以拉电话线,其余的那些由于隔得太远而无法被连接。 第i对电话线杆的两个端点分别为A_i、B_i,它们间的距离为 L_i (1 <= L_i <= 1,000,000)。数据中保证每对{A_i,B_i}最多只出现1次。编号为1的电话线杆已经接入了全国的电话网络,整个农场的电话线全都连到了编号为N的电话线杆上。也就是说,FJ的任务仅仅是找一条将1号和N号电话线杆连起来的路径,其余的电话线杆并不一定要连入电话网络。 经过谈判,电信公司最终同意免费为FJ连结K(0 <= K < N)对由FJ指定的电话线杆。对于此外的那些电话线,FJ需要为它们付的费用,等于其中最长的电话线的长度(每根电话线仅连结一对电话线杆)。如果需要连结的电话线杆不超过 K对,那么FJ的总支出为0。 请你计算一下,FJ最少需要在电话线上花多少钱。

Input

* 第1行: 3个用空格隔开的整数:N,P,以及K

* 第2..P+1行: 第i+1行为3个用空格隔开的整数:A_i,B_i,L_i

Output

* 第1行: 输出1个整数,为FJ在这项工程上的最小支出。如果任务不可能完成, 输出-1

Sample Input

5 7 1
1 2 5
3 1 4
2 4 8
3 2 3
5 2 9
3 4 7
4 5 6

输入说明:

一共有5根废弃的电话线杆。电话线杆1不能直接与电话线杆4、5相连。电话
线杆5不能直接与电话线杆1、3相连。其余所有电话线杆间均可拉电话线。电信
公司可以免费为FJ连结一对电话线杆。

Sample Output

4

输出说明:

FJ选择如下的连结方案:1->3;3->2;2->5,这3对电话线杆间需要的
电话线的长度分别为4、3、9。FJ让电信公司提供那条长度为9的电话线,于是,
他所需要购买的电话线的最大长度为4。

HINT

 

Source

Silver

二分当前的最小代价,如果 u 连出去的一条边权比代价高,就考虑公司报销。。

 #include <cstdio>
#include <queue> #define min(a,b) (a<b?a:b) inline void read(int &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
}
const int M();
const int N();
int n,k,p;
int head[N],sumedge;
struct Edge {
int v,next,w;
Edge(int v=,int next=,int w=):v(v),next(next),w(w){}
}edge[M<<];
inline void ins(int u,int v,int w)
{
edge[++sumedge]=Edge(v,head[u],w),head[u]=sumedge;
edge[++sumedge]=Edge(u,head[v],w),head[v]=sumedge;
} bool inq[N];
int dis[N];
std::queue<int>que;
int L,R,Mid,ans=-;
inline bool check(int lim)
{
for(int i=; i<=n; ++i)
dis[i]=0x3f3f3f3f,inq[i]=;
for(; !que.empty(); ) que.pop();
int cnt=; que.push(); dis[]=;
for(int u,v; !que.empty(); )
{
u=que.front(); que.pop(); inq[u]=;
for(int i=head[u]; i; i=edge[i].next)
{
v=edge[i].v;
cnt=(edge[i].w>lim);
if(dis[v]>dis[u]+cnt)
{
dis[v]=dis[u]+cnt;
if(!inq[v]) inq[v]=,que.push(v);
}
}
}
return dis[n]<=k;
} int Presist()
{
read(n),read(p),read(k);
for(int u,v,w,i=; i<=p; ++i)
read(u),read(v),read(w),ins(u,v,w),R=R>w?R:w;;
for(; L<=R; )
{
Mid=L+R>>;
if(check(Mid))
{
ans=Mid;
R=Mid-;
}
else L=Mid+;
}
printf("%d\n",ans);
return ;
} int Aptal=Presist();
int main(int argc,char**argv){;}

BZOJ——1614: [Usaco2007 Jan]Telephone Lines架设电话线的更多相关文章

  1. BZOJ 1614: [Usaco2007 Jan]Telephone Lines架设电话线

    题目 1614: [Usaco2007 Jan]Telephone Lines架设电话线 Time Limit: 5 Sec  Memory Limit: 64 MB Description Farm ...

  2. BZOJ 1614 [Usaco2007 Jan]Telephone Lines架设电话线:spfa + 二分【路径中最大边长最小】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1614 题意: 给你一个无向图,n个点,m条边. 你需要找出一条从1到n的路径,使得这条路径 ...

  3. bzoj 1614: [Usaco2007 Jan]Telephone Lines架设电话线【二分+spfa】

    二分答案,然后把边权大于二分值的的边赋值为1,其他边赋值为0,然后跑spfa最短路看是否满足小于等于k条边在最短路上 #include<iostream> #include<cstd ...

  4. BZOJ 1614 [Usaco2007 Jan]Telephone Lines架设电话线 (二分+最短路)

    题意: 给一个2e4带正边权的图,可以免费k个边,一条路径的花费为路径上边权最大值,问你1到n的最小花费 思路: 对于一个x,我们如果将大于等于x的边权全部免费,那么至少需要免费的边的数量就是 “设大 ...

  5. BZOJ1614: [Usaco2007 Jan]Telephone Lines架设电话线

    1614: [Usaco2007 Jan]Telephone Lines架设电话线 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 892  Solved: ...

  6. [Usaco2007 Jan]Telephone Lines架设电话线(最短路,二分)

    [Usaco2007 Jan]Telephone Lines架设电话线 Description FarmerJohn打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向 ...

  7. [Usaco2007 Jan]Telephone Lines架设电话线[二分答案+最短路思想]

    Description Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向电信公司支付一定的费用. FJ的农场周围分布着N(1 <= N ...

  8. 【bzoj1614】[Usaco2007 Jan]Telephone Lines架设电话线 二分+SPFA

    题目描述 Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向电信公司支付一定的费用. FJ的农场周围分布着N(1 <= N <= 1 ...

  9. 【bzoj1614】[Usaco2007 Jan]Telephone Lines架设电话线

    题目描述 Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向电信公司支付一定的费用.     FJ的农场周围分布着N(1 <= N < ...

随机推荐

  1. Docker和K8S

    干货满满!10分钟看懂Docker和K8S [摘自:https://my.oschina.net/jamesview/blog/2994112]   本文来源微信号:鲜枣课堂 2010年,几个搞IT的 ...

  2. ASP.NET 开发人员不必担心 Node 的五大理由

    哦别误会……我真的很喜欢 Node,而且我觉得它提出的概念和模式将在很长一段时间内,对服务端 Web 编程产生深远的影响.即使随着时间的推移 Node 过气了,我们肯定可以从下一个牛逼玩意身上或多或少 ...

  3. python中enumerate()函数的用法

    描述: enumerate() 函数用于将一个可遍历的数据对象(如列表.元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中.其英文意为:枚举,列举. 函数说明: 语法 ...

  4. CSS3-transform-style

    transform-style属性 transform-style属性是3D空间一个重要属性,指定嵌套元素如何在3D空间中呈现.他主要有两个属性值:flat和preserve-3d. transfor ...

  5. datetime模块,random模块

    6.10自我总结 1.datetime模块(用于修改日期) import datetime print(datetime.datetime.now(),type(datetime.datetime.n ...

  6. PAT Basic 1051

    1051 复数乘法 复数可以写成 (A+Bi) 的常规形式,其中 A 是实部,B 是虚部,i 是虚数单位,满足 i​2​​=−1:也可以写成极坐标下的指数形式 (R×e​(Pi)​​),其中 R 是复 ...

  7. Android开发——子线程操作UI的几种方法

    在Android项目中经常有碰到这样的问题,在子线程中完成耗时操作之后要更新UI,下面就自己经历的一些项目总结一下更新的方法: 在看方法之前需要了解一下Android中的消息机制. 转载请标明出处:h ...

  8. POJ 1651 区间DP Multiplication Puzzle

    此题可以转化为最优矩阵链乘的形式,d(i, j)表示区间[i, j]所能得到的最小权值. 枚举最后一个拿走的数a[k],状态转移方程为d(i, j) = min{ d(i, k) + d(k, j) ...

  9. mac下secureCRT 客户端 $redis-cli回车后没有反应的解决办法

    启动redis server后,SecureCRT进入redis-cli,输入不断在后面追加IP:Port显示设置当前的Session Options-->Terminal-->Emula ...

  10. linux python 安装 pip出现 No module named 'setuptools'

    1.下载pip wget --no-check-certificate https://pypi.python.org/packages/source/p/pip/pip-8.0.2.tar.gz#m ...