Problem Description
RSA is one of the most powerful methods to encrypt data. The RSA algorithm is described as follow:

> choose two large prime integer p, q
> calculate n = p × q, calculate F(n) = (p - 1) × (q - 1)
> choose an integer e(1 < e < F(n)), making gcd(e, F(n)) = 1, e will be the public key
> calculate d, making d × e mod F(n) = 1 mod F(n), and d will be the private key

You can encrypt data with this method :

C = E(m) = me mod n

When you want to decrypt data, use this method :

M = D(c) = cd mod n

Here, c is an integer ASCII value of a letter of cryptograph and m is an integer ASCII value of a letter of plain text.

Now given p, q, e and some cryptograph, your task is to "translate" the cryptograph into plain text.

 
Input
Each case will begin with four integers p, q, e, l followed by a line of cryptograph. The integers p, q, e, l will be in the range of 32-bit integer. The cryptograph consists of l integers separated by blanks. 
 
Output
For each case, output the plain text in a single line. You may assume that the correct result of plain text are visual ASCII letters, you should output them as visualable letters with no blank between them.
 
Sample Input
101 103 7 11
7716 7746 7497 126 8486 4708 7746 623 7298 7357 3239
 
Sample Output
I-LOVE-ACM.
 
Author
JGShining(极光炫影)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long LL;
/*
题目要求
> calculate n = p × q, calculate F(n) = (p - 1) × (q - 1)
> choose an integer e(1 < e < F(n)), making gcd(e, F(n)) = 1, e will be the public key
> calculate d, making d × e mod F(n) = 1 mod F(n), and d will be the private key
知道 P Q E
gcd(a,b) == 1 等价于 存在x,y a*x+b*y==1
存在x,y
e*x + F(n)*y = 1
d*e%F(n) = 1%F(n)
d*e + F(n)*y = 1; 通过求逆元方法解出 d 即可
*/
LL p,q,e,l;
LL ex_gcd(LL a,LL b,LL &x,LL &y)
{
if(b==)
{
x = ;
y = ;
return a;
}
LL ans = ex_gcd(b,a%b,x,y);
LL tmp = x;
x = y;
y = tmp - a/b*x;
return ans;
}
LL cal(LL a,LL b,LL c)
{
LL x=,y=;
LL gcd = ex_gcd(a,b,x,y);
if(c%gcd!=) return -;
x *= c/gcd;
b /= gcd;
if(b<) b = -b;
LL ans = x%b;
if(ans<) ans+=b;
return ans;
}
int main()
{
while(scanf("%lld%lld%lld%lld",&p,&q,&e,&l)!=EOF)
{
LL fn = (p-)*(q-),n = p*q;
LL d = cal(e,fn,);
LL tmp,ans;
for(int i=;i<l;i++)
{
scanf("%lld",&tmp);
tmp %= n;
ans = ;
for(int j=;j<d;j++)
ans = (ans*tmp)%n;
printf("%c",ans%n);
}
printf("\n");
}
}

HDU RSA 扩展欧几里得的更多相关文章

  1. HDU 5114 扩展欧几里得

    题目大意:给你两个球的坐标 他们都往(1, 1)这个方向以相同的速度走,问你他们在哪个位置碰撞. 思路:这种题目需要把x方向和y方向分开来算周期,两个不同周期需要用扩展欧几里得来求第一次相遇. #in ...

  2. hdu 2669(扩展欧几里得)

    Romantic Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  3. HDU 4180 扩展欧几里得

    RealPhobia Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  4. hdu 2669 扩展欧几里得(裸)

    #include<stdio.h> #include<iostream> #define ll __int64 ll gcd(ll a,ll b,ll &x,ll &a ...

  5. 扩展欧几里得 hdu 1576

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 不知道扩展欧几里得的同学可以参考:https://blog.csdn.net/zhjchengf ...

  6. URAL 1141. RSA Attack(欧拉定理+扩展欧几里得+快速幂模)

    题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算 ...

  7. hdu 5512 Pagodas 扩展欧几里得推导+GCD

    题目链接 题意:开始有a,b两点,之后可以按照a-b,a+b的方法生成[1,n]中没有的点,Yuwgna 为先手, Iaka后手.最后不能再生成点的一方输: (1 <= n <= 2000 ...

  8. hdu 1573 A/B (扩展欧几里得)

    Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973)= 1). Input 数据的第一行 ...

  9. hdu 1576 A/B 【扩展欧几里得】【逆元】

    <题目链接> <转载于 >>> > A/B Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)( ...

随机推荐

  1. macbookpro安装Ubuntu16.04.1 LTS爬坑之旅。亲测有效(集众家之长)。安装时间为2017-11-19。

    1.格式化U盘 要求:(1)切换分区格式为Mac OS扩展 (日志型):(2)方案(scheme)设置为:GUID Partition Map:如图(使用mac自带磁盘工具) 2.给Ubuntu划分磁 ...

  2. 2016天池-O2O优惠券使用预测竞赛总结

    第一次参加数据预测竞赛,发现还是挺有意思的.本文中的部分内容参考第一名“诗人都藏在水底”的解决方案. 从数据划分.特征提取.模型设计.模型融合/优化,整个业务流程得到了训练.作为新手在数据划分和模型训 ...

  3. Quartz.Net学习笔记(2)-简介

    一.Quartz.Net是什么 1.来源 Quartz.Net是一个开源的作业调度框架: 2.下载地址 官网地址:http://www.quartz-scheduler.net/documentati ...

  4. hexo博客域名重复提交问题

    之前电脑重装系统,导致我的博客也忘记备份了.呜呜 期间试过hexo的next主题,虽然很好看,但是一直出问题,最终又恢复到了原来的主题,还是原来的配方,还是原来的味道 记录: 一.加载域名管理器 二. ...

  5. 【DVWA】【SQL Injection】SQL注入 Low Medium High Impossible

    1.初级篇 low.php 先看源码,取得的参数直接放到sql语句中执行 if( isset( $_REQUEST[ 'Submit' ] ) ) { // Get input $id = $_REQ ...

  6. 【sqli-labs】【jsp/tomcat】 less29 less30 less31 less32 (GET型利用HTTP参数污染的注入)

    sqli-labs带了几个Java版本的web注入,在tomcat-files.zip里 以Less29为例,查看源码,可以看出请求最后还是提交给了php应用,难怪less29文件夹下有一个没有任何防 ...

  7. 安卓app测试之Monkeyrunner

    一.MonkeyRunner简介 MonkeyRunner提供了系列的API ,MonkeyRunner可以完成模拟事件及截图操作 ,分为以下三类: MonkeyRunner:用来连接设备或模拟器的 ...

  8. vba txt读写的几种方式

    四种方式写txt 1.这种写出来的是ANSI格式的txt Dim TextExportFile As String TextExportFile = ThisWorkbook.Path & & ...

  9. MySQL单表数据不超过500万:是经验数值,还是黄金铁律?

    今天,探讨一个有趣的话题:MySQL 单表数据达到多少时才需要考虑分库分表?有人说 2000 万行,也有人说 500 万行.那么,你觉得这个数值多少才合适呢? 曾经在中国互联网技术圈广为流传着这么一个 ...

  10. 配置redis三主三从

    主从环境 centos7.6 redis4.0.1 主 从 192.168.181.139:6379 192.168.181.136:6379 192.168.181.136:6380 192.168 ...