Problem Description
RSA is one of the most powerful methods to encrypt data. The RSA algorithm is described as follow:

> choose two large prime integer p, q
> calculate n = p × q, calculate F(n) = (p - 1) × (q - 1)
> choose an integer e(1 < e < F(n)), making gcd(e, F(n)) = 1, e will be the public key
> calculate d, making d × e mod F(n) = 1 mod F(n), and d will be the private key

You can encrypt data with this method :

C = E(m) = me mod n

When you want to decrypt data, use this method :

M = D(c) = cd mod n

Here, c is an integer ASCII value of a letter of cryptograph and m is an integer ASCII value of a letter of plain text.

Now given p, q, e and some cryptograph, your task is to "translate" the cryptograph into plain text.

 
Input
Each case will begin with four integers p, q, e, l followed by a line of cryptograph. The integers p, q, e, l will be in the range of 32-bit integer. The cryptograph consists of l integers separated by blanks. 
 
Output
For each case, output the plain text in a single line. You may assume that the correct result of plain text are visual ASCII letters, you should output them as visualable letters with no blank between them.
 
Sample Input
101 103 7 11
7716 7746 7497 126 8486 4708 7746 623 7298 7357 3239
 
Sample Output
I-LOVE-ACM.
 
Author
JGShining(极光炫影)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long LL;
/*
题目要求
> calculate n = p × q, calculate F(n) = (p - 1) × (q - 1)
> choose an integer e(1 < e < F(n)), making gcd(e, F(n)) = 1, e will be the public key
> calculate d, making d × e mod F(n) = 1 mod F(n), and d will be the private key
知道 P Q E
gcd(a,b) == 1 等价于 存在x,y a*x+b*y==1
存在x,y
e*x + F(n)*y = 1
d*e%F(n) = 1%F(n)
d*e + F(n)*y = 1; 通过求逆元方法解出 d 即可
*/
LL p,q,e,l;
LL ex_gcd(LL a,LL b,LL &x,LL &y)
{
if(b==)
{
x = ;
y = ;
return a;
}
LL ans = ex_gcd(b,a%b,x,y);
LL tmp = x;
x = y;
y = tmp - a/b*x;
return ans;
}
LL cal(LL a,LL b,LL c)
{
LL x=,y=;
LL gcd = ex_gcd(a,b,x,y);
if(c%gcd!=) return -;
x *= c/gcd;
b /= gcd;
if(b<) b = -b;
LL ans = x%b;
if(ans<) ans+=b;
return ans;
}
int main()
{
while(scanf("%lld%lld%lld%lld",&p,&q,&e,&l)!=EOF)
{
LL fn = (p-)*(q-),n = p*q;
LL d = cal(e,fn,);
LL tmp,ans;
for(int i=;i<l;i++)
{
scanf("%lld",&tmp);
tmp %= n;
ans = ;
for(int j=;j<d;j++)
ans = (ans*tmp)%n;
printf("%c",ans%n);
}
printf("\n");
}
}

HDU RSA 扩展欧几里得的更多相关文章

  1. HDU 5114 扩展欧几里得

    题目大意:给你两个球的坐标 他们都往(1, 1)这个方向以相同的速度走,问你他们在哪个位置碰撞. 思路:这种题目需要把x方向和y方向分开来算周期,两个不同周期需要用扩展欧几里得来求第一次相遇. #in ...

  2. hdu 2669(扩展欧几里得)

    Romantic Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  3. HDU 4180 扩展欧几里得

    RealPhobia Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  4. hdu 2669 扩展欧几里得(裸)

    #include<stdio.h> #include<iostream> #define ll __int64 ll gcd(ll a,ll b,ll &x,ll &a ...

  5. 扩展欧几里得 hdu 1576

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 不知道扩展欧几里得的同学可以参考:https://blog.csdn.net/zhjchengf ...

  6. URAL 1141. RSA Attack(欧拉定理+扩展欧几里得+快速幂模)

    题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算 ...

  7. hdu 5512 Pagodas 扩展欧几里得推导+GCD

    题目链接 题意:开始有a,b两点,之后可以按照a-b,a+b的方法生成[1,n]中没有的点,Yuwgna 为先手, Iaka后手.最后不能再生成点的一方输: (1 <= n <= 2000 ...

  8. hdu 1573 A/B (扩展欧几里得)

    Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973)= 1). Input 数据的第一行 ...

  9. hdu 1576 A/B 【扩展欧几里得】【逆元】

    <题目链接> <转载于 >>> > A/B Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)( ...

随机推荐

  1. I - Andy's First Dictionary(set+stringstream)

    Description Andy, 8, has a dream - he wants to produce his very own dictionary. This is not an easy ...

  2. 转 js实践篇:例外处理Try{}catch(e){}

    程序开发中,编程人员经常要面对的是如何编写代码来响应错误事件的发生,即例外处理(exception handlers).如果例外处理代码设计得周全,那么最终呈现给用户的就将是一个友好的界面.否则,就会 ...

  3. error: no such device : 76de62ec-ac60-4c4d-bb Entering rescue mode .. grub resuce>(系统硬盘驱动器MBR已损坏)问题解决办法(图文详解)

    问题详情   近期,由于博主我,担任实验室整个大数据集群的leader,突然的断电给整个集群造成,如下的情况问题.(欲哭无泪,我的各种服务啊) 解决办法 第一种方法:尝试,直接重启机器(我这里是台式机 ...

  4. 初识mybatis之入门案例

    我也是自学了一下,在idea中基于maven的mybatis的配置.有什么不对的地方,请指正,谢谢. 1.1咋们先来配置测试一下,配置mybatis的图解: 1.2 pom.xml需要mybatis的 ...

  5. CF848A From Y to Y

    思路1: 每次贪心地选择满足i * (i - 1) / 2 <= k最大的i并从k中减去i * (i - 1) / 2,直至k为0.由于函数x * (x - 1) / 2的增长速度比2x要慢,所 ...

  6. win7如何设置自动关机

    如果想设置Win7按照自己意愿自动关机,而又不希望下载安装第三方软件,则可以通过以下两个方法来简单实现. 工具/原料 Windows7操作系统环境 方法1:利用cmd命令 1 打开cmd窗口. 方法一 ...

  7. 微信小程序一些常见的坑

    1.小程序都报wxss编译错误 解决方法: 在控制台输入openVendor() ,清除里面的wcsc wcsc.exe 然后重启工具 2.微信小程序wx:for警告 Now you can prov ...

  8. 61配置nanopim1plus的HDMI为1080p输出

    61配置nanopim1plus的HDMI为1080p输出 大文实验室/大文哥 壹捌陆捌零陆捌捌陆捌贰 21504965 AT qq.com 完成时间:2018/4/4 10:21 版本:V1.1 开 ...

  9. ubuntu下删除和新建用户(并有su权限)

    http://blog.csdn.net/speedme/article/details/8206144ubuntu下删除和新建用户(并有su权限) 如何创建ubuntu新用户?输入:sudo add ...

  10. python __slots__ 详解(上篇)

    转自:http://blog.csdn.net/sxingming/article/details/52892640 python中的new-style class要求继承Python中的一个内建类型 ...