[bzoj4826][Hnoi2017]影魔_单调栈_主席树
影魔 bzoj-4826 Hnoi-2017
题目大意:给定一个$n$个数的序列$a$,求满足一下情况的点对个数:
注释:$1\le n,m\le 2\cdot 10^5$,$1\le p1,p2\le 1000$。
想法:
我们先用单调栈求出一个数左边第一个比它大的,和右边第一个比它大的。$l_i$和$r_i$就表示这两个值。
然后我们发现,$(l_i,r_i)$就是一个合法的第一个条件的点对。
接下来我们考虑如何统计第二个条件的点对。
第二个条件的话如果还想用刚才的值表示的话,我们发现就是在平面上枚举一个线段,然后把这个线段染色。
每次统计一个矩形中多少个点是染色的。
而这个过程我们可以用主席树+标记永久化来实现的。
Code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 200010
#define lson l,mid,ls[x],ls[y]
#define rson mid+1,r,rs[x],rs[y]
using namespace std; typedef long long ll;
char *p1,*p2,buf[100000];
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int rd() {int x=0; char c=nc(); while(c<48) c=nc(); while(c>47) x=(((x<<2)+x)<<1)+(c^48),c=nc(); return x;}
struct Node
{
int x,l,r; ll p;
Node() {}
Node(int x_,int l_,int r_,ll p_) {x=x_,l=l_,r=r_,p=p_;}
}v[N<<2];
int a[N],lp[N],rp[N],sta[N],top,cnt,root[N],ls[N<<6],rs[N<<6],tot;
ll sum[N<<6],add[N<<6];
inline bool cmp(const Node &a,const Node &b) {return a.x<b.x;}
inline void pushup(int x) {sum[x]=sum[ls[x]]+sum[rs[x]];}
void insert(int b,int e,ll a,int l,int r,int x,int &y)
{
y=++tot,ls[y]=ls[x],rs[y]=rs[x],add[y]=add[x],sum[y]=sum[x]+a*(e-b+1);
if(b==l&&r==e) {add[y]+=a; return;}
int mid=(l+r)>>1;
if(e<=mid) insert(b,e,a,lson);
else if(b>mid) insert(b,e,a,rson);
else insert(b,mid,a,lson),insert(mid+1,e,a,rson);
}
ll query(int b,int e,int l,int r,int x,int y)
{
if(b<=l&&r<=e) return sum[y]-sum[x];
int mid=(l+r)>>1; ll ans=(add[y]-add[x])*(e-b+1);
if(e<=mid) return ans+query(b,e,lson);
else if(b>mid) return ans+query(b,e,rson);
else return ans+query(b,mid,lson)+query(mid+1,e,rson);
}
int main()
{
int n,m,i,j,x,y;
ll p1,p2;
n=rd(),m=rd(); p1=rd(),p2=rd(); for(int i=1;i<=n;i++) a[i]=rd();
a[0]=a[n+1]=1<<30,top=1;
for(i=1;i<=n;i++)
{
while(a[sta[top]]<a[i]) top--;
lp[i]=sta[top],sta[++top]=i;
}
top=1,sta[1]=n+1;
for(i=n;i>=1;i--)
{
while(a[sta[top]]<a[i])top--;
rp[i]=sta[top],sta[++top]=i;
}
for(i=1;i<=n;i++)
{
if(lp[i]!=0&&rp[i]!=n+1) v[++cnt]=Node(lp[i],rp[i],rp[i],p1);
if(i<n) v[++cnt]=Node(i,i+1,i+1,p1);
if(lp[i]!=0&&rp[i]-i>1) v[++cnt]=Node(lp[i],i+1,rp[i]-1,p2);
if(rp[i]!=n+1&&i-lp[i]>1) v[++cnt]=Node(rp[i],lp[i]+1,i-1,p2);
}
sort(v+1,v+cnt+1,cmp);
for(i=j=1;i<=n;i++)
{
root[i]=root[i-1];
while(j<=cnt&&v[j].x==i)
insert(v[j].l,v[j].r,v[j].p,1,n,root[i],root[i]),j++;
}
while(m--)
{
x=rd(),y=rd();
printf("%lld\n",query(x,y,1,n,root[x-1],root[y]));
}
return 0;
}
小结:好题。

[bzoj4826][Hnoi2017]影魔_单调栈_主席树的更多相关文章
- P3722 [AH2017/HNOI2017]影魔(单调栈+扫描线+线段树)
题面传送门 首先我们把这两个贡献翻译成人话: 区间 \([l,r]\) 产生 \(p_1\) 的贡献当且仅当 \(a_l,a_r\) 分别为区间 \([l,r]\) 的最大值和次大值. 区间 \([l ...
- BZOJ 4826 [Hnoi2017]影魔 ——扫描线 单调栈
首先用单调栈和扫描线处理出每一个数左面最近的比他大的数在$l[i]$,右面最近的比他大的数$r[i]$. 然后就可以考虑每种贡献是在什么时候产生的. 1.$(l[i],r[i])$产生$p1$的贡献 ...
- LOJ#3083.「GXOI / GZOI2019」与或和_单调栈_拆位
#3083. 「GXOI / GZOI2019」与或和 题目大意 给定一个\(N\times N\)的矩阵,求所有子矩阵的\(AND(\&)\)之和.\(OR(|)\)之和. 数据范围 \(1 ...
- bzoj 4826: [Hnoi2017]影魔【单调栈+树状数组+扫描线】
参考:https://www.cnblogs.com/lcf-2000/p/6789680.html 这是一个相对码量少的做法,用到了区间修改区间查询的树状数组,详见:www.cnblogs.com/ ...
- BZOJ_1307_玩具_单调栈+双指针
BZOJ_1307_玩具_单调栈+双指针 Description 小球球是个可爱的孩子,他喜欢玩具,另外小球球有个大大的柜子,里面放满了玩具,由于柜子太高了,每天小球球都会让妈妈从柜子上拿一些玩具放在 ...
- 【bzoj4540】[Hnoi2016]序列 单调栈+离线+扫描线+树状数组区间修改区间查询
题目描述 给出一个序列,多次询问一个区间的所有子区间最小值之和. 输入 输入文件的第一行包含两个整数n和q,分别代表序列长度和询问数.接下来一行,包含n个整数,以空格隔开,第i个整数为ai,即序列第i ...
- [BZOJ4826] [HNOI2017] 影魔 单调栈 主席树
题面 因为是一个排列,所以不会有重复的.如果有重复就没法做了.一开始没有仔细看题目想了半天. 发现,如果是第一种情况,那么边界\(l\)和\(r\)就应该分别是整个区间的最大值和次大值. 然后,对于那 ...
- [BZOJ4826][HNOI2017]影魔(主席树)
4826: [Hnoi2017]影魔 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 669 Solved: 384[Submit][Status][ ...
- [bzoj1345][Baltic2007]序列问题_单调栈
bzoj-1345 Baltic-2007 序列问题 题目大意:对于一个给定的序列a1,…,an,我们对它进行一个操作reduce(i),该操作将数列中的元素ai和ai+1用一个元素max(ai,ai ...
随机推荐
- JavaScript - try catch finally throw
语法: try { tryCode - 尝试执行代码块 } catch(err) { catchCode - 捕获错误的代码块 } finally { finallyCode - 无论 try / c ...
- 安卓(Android)关于 RecyclerView 不能填充满宽度
RecyclerView 不能填充满屏幕宽度 RecyclerView 的 Adapter 在使用是,一定要 @Overridepublic RecyclerView.ViewHolder onCre ...
- 快速开发框架天梭(Tissot)
天梭(Tissot)集成SpringBoot+Dubbo等主流互联网技术栈,高度集成.优化方便快速搭建应用.某互金科技公司内部孵化框架,已应用于公司90%业务系统. 框架划分模块有: tissot-c ...
- Redis缓存Object,List对象
一.到目前为止(jedis-2.2.0.jar),在Jedis中其实并没有提供这样的API对对象,或者是List对象的直接缓存,即并没有如下类似的API jedis.set(String key, O ...
- AIX 10G HA RAC卸载
删除 1:crs_stat –t资源都停掉 2:停ha 3: 删除oracle 4:删除crs 5: 删除ha smit hacmp 6: 删除vg exportvg 7;卸载hacmp smitty
- delphi 7 生成 调用 bat文件的exe文件
unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms ...
- Java集合(三)--Collection、Collections和Arrays
Collection: Collection是集合类的顶级接口,提供了对集合对象进行基本操作的通用接口方法.Collection接口的意义是为各种具体的集合提供了最大化 的统一操作方式,其直接继承接口 ...
- 获取汉字的拼音首字母--pinyin
var pinyin = (function (){ var Pinyin = function (ops){ this.initialize(ops); }, options = { checkPo ...
- [css或js控制图片自适应]
[css或js控制图片自适应]图片自动适应大小是一个非常常用的功能,在进行制作的时候为了防止图片撑开容器而对图片的尺寸进行必要的控制,我们可不可以用CSS控制图片使它自适应大小呢?此个人博客想到了一个 ...
- [bzoj2806][Ctsc2012]Cheat(后缀自动机(SAM)+二分答案+单调队列优化dp)
偷懒直接把bzoj的网页内容ctrlcv过来了 2806: [Ctsc2012]Cheat Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 1943 ...