洛谷P3209 [HNOI2010]平面图判定(2-SAT)
看到哈密顿回路就被吓傻了……结果没有好好考虑性质……
首先,平面图有个性质:边数小于等于$3n-6$(我也不知道为啥),边数大于这个的直接pass
然后考虑原图,先把哈密顿回路单独摘出来,就是一个环。对于每一条不在哈密顿回路上的边,有两种可能,一种是在环内,一种是在环外
我们用点来表示每一条边,把每一个点拆成两个分别表示这条边是在环内还是环外。对于两条边$i,j$,如果他们同时在环外或环内会交叉,那么就相当于有了约束条件,转化成一个2-SAT问题即可
至于连边,我们设$i$表示在环内,$i+m$表示在环外,如果$i,j$同在环内或环外会相交,那么连边$(i,j+m),(i+m,j),(j,i+m),(j+m,i)$,即他们永远不能同时在环内或环外
至于如果判断是否会相交,我们可以把环拆开,然后判断同在一侧是否会相交即可
//minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#define mem(a) (memset(a,0,sizeof(a)))
#define swap(x,y) (x^=y^=x^=y)
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=2e4+,M=1e5+;
int head[N],Next[M],ver[M],tot;
inline void add(int u,int v){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot;
}
int dfn[N],low[N],bl[N],st[N],num,cnt,top,n,m,k;
void tarjan(int u){
dfn[u]=low[u]=++num,st[++top]=u;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(!dfn[v]) tarjan(v),cmin(low[u],low[v]);
else if(!bl[v]) cmin(low[u],dfn[v]);
}
if(low[u]==dfn[u]) for(++cnt;st[top+]!=u;--top) bl[st[top]]=cnt;
}
inline bool check(){
for(int i=,l=m<<;i<=l;++i) if(!dfn[i]) tarjan(i);
for(int i=;i<=m;++i)
if(bl[i]==bl[i+m]) return false;
return true;
}
int rev[],cir[][],E[],eu[N],ev[N];
void clear(){
mem(head),mem(dfn),mem(low),mem(bl),mem(st),mem(cir);
num=cnt=top=tot=;
}
void solve(){
clear();
n=read(),m=read(),k=;
for(int i=;i<=m;++i){
eu[i]=read(),ev[i]=read();
if(eu[i]>ev[i]) swap(eu[i],ev[i]);
}
for(int i=;i<=n;++i){
rev[E[i]=read()]=i;
if(i>){
int u=E[i-],v=E[i];
u<v?cir[u][v]=:cir[v][u]=;
}
}
if(m>*n-) return (void)(puts("NO"));
for(int i=;i<=m;++i)
if(!cir[eu[i]][ev[i]]) eu[++k]=eu[i],ev[k]=ev[i];
m=k;
for(int i=;i<m;++i)
for(int j=i+;j<=m;++j){
int u=rev[eu[i]],v=rev[ev[i]],x=rev[eu[j]],y=rev[ev[j]];
if(u>v) swap(u,v);if(x>y) swap(x,y);
if((u<x&&v>x&&v<y)||(u>x&&u<y&&v>y)){
add(i,j+m),add(j,i+m),add(i+m,j),add(j+m,i);
}
}
puts(check()?"YES":"NO");
}
int main(){
// freopen("testdata.in","r",stdin);
int T=read();
while(T--) solve();
return ;
}
洛谷P3209 [HNOI2010]平面图判定(2-SAT)的更多相关文章
- 洛谷 P3209 [HNOI2010] 平面图判定
链接: P3209 题意: 给出 \(T\) 张无向图 \((T\leq100)\),并给出它对应的哈密顿回路,判断每张图是否是平面图. 分析: 平面图判定问题貌似是有线性做法的,这里给出链接,不是本 ...
- P3209 [HNOI2010]平面图判定
P3209 [HNOI2010]平面图判定 哈密尔顿环之外的任意一条边,要么连在环内部,要么连在环外部 判断两条边在同一部分会相交,则这两条边必须分开 那么把边看作点连边,跑二分图染色就行 #incl ...
- Luogu P3209 [HNOI2010]平面图判定(2-SAT)
P3209 [HNOI2010]平面图判定 题意 题目描述 若能将无向图\(G=(V,E)\)画在平面上使得任意两条无重合顶点的边不相交,则称\(G\)是平面图.判定一个图是否为平面图的问题是图论中的 ...
- 洛谷P3209 [HNOI2010]PLANAR(2-SAT)
题目描述 若能将无向图G=(V,E)画在平面上使得任意两条无重合顶点的边不相交,则称G是平面图.判定一个图是否为平面图的问题是图论中的一个重要问题.现在假设你要判定的是一类特殊的图,图中存在一个包含所 ...
- 洛谷P3209 [HNOI2010]PLANAR
首先用一波神奇的操作,平面图边数m<=3*n-6,直接把m降到n, 然后对于冲突的边一条环内,一条环外,可以用并查集或者2Sat做, 当然并查集是无向的,2Sat是有向的,显然用并查集比较好 复 ...
- bzoj1997 [HNOI2010]平面图判定Plana
bzoj1997 [HNOI2010]平面图判定Planar 链接 bzoj luogu 思路 好像有很多种方法过去.我只说2-sat 环上的边,要不在里面,要不在外边. 有的边是不能同时在里面的,可 ...
- [BZOJ1997][HNOI2010] 平面图判定
Description Input Output 是的..BZOJ样例都没给. 题解(from 出题人): 如果只考虑简单的平面图判定,这个问题是非常不好做的. 但是题目中有一个条件— ...
- 洛谷P3203 [HNOI2010]弹飞绵羊(LCT,Splay)
洛谷题目传送门 关于LCT的问题详见我的LCT总结 思路分析 首先分析一下题意.对于每个弹力装置,有且仅有一个位置可以弹到.把这样的一种关系可以视作边. 然后,每个装置一定会往后弹,这不就代表不存在环 ...
- Bzoj2002/洛谷P3203 [HNOI2010]弹飞绵羊(分块)
题面 Bzoj 洛谷 题解 大力分块,分块大小\(\sqrt n\),对于每一个元素记一下跳多少次能跳到下一个块,以及跳到下一个块的哪个位置,修改的时候时候只需要更新元素所在的那一块即可,然后询问也是 ...
随机推荐
- Android-studio 连接真机 调试weex项目
1.选择项目 platforms / android 2.创建虚拟机(AVD) (1)点击 AVD Manager (2) 点击 Create Virtual Device 最后发现 CPU 不 ...
- OSI七层模型详解(转)
OSI 七层模型通过七个层次化的结构模型使不同的系统不同的网络之间实现可靠的通讯,因此其最主要的功能就是帮助不同类型的主机实现数据传输 . 完成中继功能的节点通常称为中继系统.在OSI七层模型中,处于 ...
- android 项目R文件丢失解决的方法
R文件丢失的原因有非常多,这里提供几种解决的方法: 1. 选中项目,点击 Project - Clean , 清理一下项目. 2. 选中项目,右键 选择 Android Tools - Fix P ...
- startActivity、 startActivityForResult 、广播的使用
前言 近期忙着跟项目.好久没有写文字了.今天一个群里面的童鞋问到一个关于不同界面间传值的问题,借这个背景,写一段关于" startActivity. startActivityForResu ...
- openwrt gstreamer实例学习笔记(六. gstreamer Pads及其功能)
一:概述 如我们在Elements一章中看到的那样,Pads是element对外的接口.数据流从一个element的source pad到另一个element的sink pad.pads的功能(cap ...
- 《STL源代码剖析》---stl_deque.h阅读笔记(2)
看完,<STL源代码剖析>---stl_deque.h阅读笔记(1)后.再看代码: G++ 2.91.57,cygnus\cygwin-b20\include\g++\stl_deque. ...
- collection 模块 双端队列
单端队列 用于同一进程中的队列,可以叫做单进程队列. queue 遵循先进先出,先进去的必须先出来 1.先进先出: impore queue q = queue.Queue() 实例化一个对象 q.p ...
- python day-15 匿名函数 sorted ()函数 filter()函数 map()函数 递归 二分法
一.匿名函数 匿名函数的结构:变量 = lamda 参数: 返回值 a = lamda x : x*x # x为参数, : 后边的为函数体 print(a(x)) def ...
- LoadRunner性能测试样例分析
LR性能测试结果样例分析 测试结果分析 LoadRunner性能测试结果分析是个复杂的过程,通常可以从结果摘要.并发数.平均事务响应时间.每秒点击数.业务成功率.系统资源.网页细分图.Web服务器资源 ...
- html5--6-7 CSS选择器4
html5--6-7 CSS选择器4 实例 学习要点 掌握常用的CSS选择器 了解不太常用的CSS选择器 什么是选择器 当我们定义一条样式时候,这条样式会作用于网页当中的某些元素,所谓选择器就是样式作 ...