HDU1114 Piggy-Bank 【全然背包】
Piggy-Bank
any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay
everything that needs to be paid.
But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility
is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank
that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!
with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency.
Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in grams.
weight. If the weight cannot be reached exactly, print a line "This is impossible.".
3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.
题意:给定一个空储钱罐的重量和满储钱罐的重量。再给定一些硬币种类的价值和重量。每一种硬币都有无数个。问:在储钱罐里如何放硬币能使得总价值最小且总重量正好和满储钱罐重量相等。
题解:全然背包入门题。状态转移方程为dp[i][j] = min(dp[i-1][j-k*w[i]] + k*v[i]) 0<=k<=totalWeight/w[i],跟01背包一样,全然背包dp数组也能够压缩成一维数组。
仅仅只是内层循环要顺序。而01背包是逆序。
另外这题在初始化dp数组时有个陷阱:对于在函数外定义的数组。若对它使用memset(dp + 1, -1, sizeof(dp + 1));那么将仅仅有一个元素被初始化为-1,其余的全为0.可是若是memset(dp, -1, sizeof(dp));数组就能够所有初始化为-1。
#include <stdio.h>
#include <string.h> int dp[10002]; int main()
{
int totalWeight, weight, val, n, t, i, j;
scanf("%d", &t);
while(t--){
scanf("%d%d", &weight, &totalWeight);
totalWeight -= weight;
scanf("%d", &n);
memset(dp + 1, -1, sizeof(int) * 10001);
for(i = 1; i <= n; ++i){
scanf("%d%d", &val, &weight);
for(j = weight; j <= totalWeight; ++j){
if(dp[j - weight] != -1){
if(dp[j] == -1 || dp[j] > dp[j - weight] + val)
dp[j] = dp[j - weight] + val;
}
}
}
if(dp[totalWeight] == -1) printf("This is impossible.\n");
else printf("The minimum amount of money in thepiggy-bank is %d.\n",
dp[totalWeight]);
}
return 0;
}
HDU1114 Piggy-Bank 【全然背包】的更多相关文章
- G 全然背包
<span style="color:#3333ff;">/* /* _________________________________________________ ...
- 01背包模板、全然背包 and 多重背包(模板)
转载请注明出处:http://blog.csdn.net/u012860063 贴一个自觉得解说不错的链接:http://www.cppblog.com/tanky-woo/archive/2010/ ...
- HDU 1248 寒冰王座(全然背包:入门题)
HDU 1248 寒冰王座(全然背包:入门题) http://acm.hdu.edu.cn/showproblem.php?pid=1248 题意: 不死族的巫妖王发工资拉,死亡骑士拿到一张N元的钞票 ...
- HDU 4508 湫湫系列故事——减肥记I(全然背包)
HDU 4508 湫湫系列故事--减肥记I(全然背包) http://acm.hdu.edu.cn/showproblem.php?pid=4508 题意: 有n种食物, 每种食物吃了能获得val[i ...
- A_全然背包
/* copyright: Grant Yuan algorithm: 全然背包 time : 2014.7.18 __________________________________________ ...
- nyist oj 311 全然背包 (动态规划经典题)
全然背包 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描写叙述 直接说题意,全然背包定义有N种物品和一个容量为V的背包.每种物品都有无限件可用.第i种物品的体积是c,价值是 ...
- HDU 1114 Piggy-Bank 全然背包
Piggy-Bank Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit S ...
- poj 1384 Piggy-Bank(全然背包)
http://poj.org/problem?id=1384 Piggy-Bank Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- UVA 10465 Homer Simpson(全然背包: 二维目标条件)
UVA 10465 Homer Simpson(全然背包: 二维目标条件) http://uva.onlinejudge.org/index.php? option=com_onlinejudge&a ...
随机推荐
- Objective-C urlEncode urlDecode
@interface NSString (stringByDecodingURLFormat) - (NSString *)stringByDecodingURLFormat; - (NSString ...
- PowerShell-第2章 管道
2.1 过滤列表项或命令输出项 列出所有正在运行进程名称中包含"search"的进程,对进程名字属性使用-like操作符来比较进程的Name属性 Get-Process | Whe ...
- js prototype 添加属性对象
在本例中,我们将展示如何使用 prototype 属性来向对象添加属性: <script type="text/javascript"> function employ ...
- 利用Node.js调用Elasticsearch
1. 下载elasticsearch库 npm install elasticsearch --save 2.在脚本里导入模块,如下所示 const elasticsearch = require(' ...
- ASP.NET(三):整体总结
导读:经过一段时间的学习,我的ASP.NET也算是结束了.在这个过程中,总结了它的六大对象,现在先做个总体的总结,然后还会总结一下真假分页的情况.只有总结才能收获.ASP.net严格说起来,其实在VB ...
- XML文件中<return_code><![CDATA[SUCCESS]]></return_code>中CDATA的用法
转义字符不合法的XML字符必须被替换为相应的实体. 如果在XML文档中使用类似"<" 的字符, 那么解析器将会出现错误,因为解析器会认为这是一个新元素的开始.所以不应该象下面 ...
- poj 3617Best Cow Line
Description FJ is about to take his N (1 ≤ N ≤ 2,000) cows to the annual"Farmer of the Year&quo ...
- hdu6071[最短路+解不等式] 2017多校4
求出所有,从2走到x所需的花费在对 t = 2*min(d1,2, d2,3) 模运算下, 所有剩余系的最短路即可(把一个点拆成 t 个点, 每个点代表一种剩余系), 知道了所有剩余系就可以凑出答案 ...
- iOS学习笔记05-触摸事件
一.事件分发处理[由外到内] 在iOS中发生触摸后,事件会加到UIApplication事件队列,UIApplication会从事件队列取出最前面的事件进行分发处理,通常会先分发给主窗口,主窗口会调用 ...
- 【Luogu】P3391文艺平衡树(Splay)
题目链接 ddosvoid和自为风月马前卒教了我这道题 他们好强啊 如果我们要反转区间[l,r] 我们首先把l的前驱旋转到根节点 再把r的后继旋转到根节点的右儿子 那么此时根节点的右儿子的左儿子所代表 ...