【AHOI 2005】 约数研究
【题目链接】
【算法】
要求M,显然可以通过约数个数定理从1..N暴力计算答案,然而n最大10^6,这个算法的时间复杂度是
O(N * sqrt(N))的,不能通过此题
因此我们换一种思路
不妨考虑每个数对答案的“贡献”,若这个数为i,那么1..n中,共有n / i个数是i的倍数,那么i对答案的“贡献”
就是n / i,因此答案应该是 sigma(n / i) (1 <= i <= n)
【代码】
#include<bits/stdc++.h>
using namespace std; long long i,n,ans = ; template <typename T> inline void read(T &x) {
long long f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) { if (c == '-') f = -f; }
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
} template <typename T> inline void write(T x) {
if (x < ) { putchar('-'); x = -x; }
if (x > ) write(x/);
putchar(x%+'');
} template <typename T> inline void writeln(T x) {
write(x);
puts("");
} int main() { read(n);
for (i = ; i <= n; i++) ans += n / i;
writeln(ans); return ; }
【AHOI 2005】 约数研究的更多相关文章
- [BZOJ 1968] [AHOI 2005] 约数研究
Description Input 只有一行一个整数 \(N\). Output 只有一行输出,为整数 \(M\),即 \(f(1)\) 到 \(f(N)\) 的累加和. Sample Input 3 ...
- BZOJ 1968: [Ahoi2005]COMMON 约数研究
1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2032 Solved: 1537[Submit] ...
- P1403约数研究
洛谷1403 约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机"Samuel2"的长时间运算成为了可能.由于在去年一年的辛苦工作 ...
- BZOJ-1968 COMMON 约数研究 数论+奇怪的姿势
1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1513 Solved: 1154 [Submit] ...
- BZOJ 1968: [Ahoi2005]COMMON 约数研究 水题
1968: [Ahoi2005]COMMON 约数研究 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeO ...
- BZOJ 1968: [Ahoi2005]COMMON 约数研究(新生必做的水题)
1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 2351 Solved: 1797 [Submi ...
- 【BZOJ1968】约数研究(数论)
[BZOJ1968]约数研究(数论) 题面 BZOJ链接(题目是图片形式的) 题解 傻逼题 \(NOIP\) \(T1\)难度 不会做的话您可以退役 #include<iostream> ...
- bzoj千题计划170:bzoj1968: [Ahoi2005]COMMON 约数研究
http://www.lydsy.com/JudgeOnline/problem.php?id=1968 换个角度 一个数可以成为几个数的约数 #include<cstdio> #incl ...
- 【BZOJ】【1968】【AHOI2005】COMMON 约数研究
数论 原谅我这么傻逼的题都不会做…… 或许写成数学公式的形式比较容易想到解法? $$ans=\sum_{i=1}^n \sum_{d|i} 1$$ ……是不是感觉很水呀……是吧……改成先枚举d再枚举 ...
- 洛谷P1403 [AHOI2005] 约数研究 [数论分块]
题目传送门 约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工作取得了不错的成绩, ...
随机推荐
- 【RMAN】RMAN跨版本恢复(下)--大版本异机恢复
[RMAN]RMAN跨版本恢复(下)--大版本异机恢复 BLOG文档结构图 ORACLE_SID=ORA1024G 关于10g的跨小版本恢复参考:http://blog.chinaunix.net/u ...
- NOIP2013D1T3货车运输(最大生成树+倍增lca)
传送门 这道题,先用kruskal求一遍图中的最大生成树. 然后,倍增求lca,求lca的同时求出边权的最小值. #include <cstring> #include <cstdi ...
- [NOI2003]Editor(块状链表)
传送门 看了看块状链表,就是数组和链表的合体. 看上去好高大尚,思想也很简单. 但是发现代码量也不是很小,而且代码理解起来也是费尽得很,倒不如splay用起来顺手. 在加上适用范围貌似不是特别广,所以 ...
- git push ‘No refs in common and none specified’doing nothing问题解决
git push ‘No refs in common and none specified’doing nothing问题解决 输入git push origin master即可解决问题
- apache + DSO -动态共享对象(DSO)
http://www.jinbuguo.com/apache/menu22/dso.html
- Sigar 编译笔记
https://blog.csdn.net/zw3413/article/details/79482438
- CF821E(多次矩阵快速幂)
题意: 冈伦从二维平面上(0,0)走到(k,0),(k<=1e18),每次有三个行动方向:右上一格.右方一格.右下一格,问一共有多少种走的方案 限制:每段x都有一个天花板,一共有n段天花板(n& ...
- Java面试题,深入理解final关键字
final关键字 final的简介 final可以修饰变量,方法和类,用于表示所修饰的内容一旦赋值之后就不会再被改变,比如String类就是一个final类型的类. final的具体使用场景 fina ...
- java面向对象day01
前言: 1.首先我们要明白:万物皆对象.现实中存在的事物都是对象.而面向对象技术就是对客观事物进行抽象.2.而java语言是纯面向对象的的语言,它具有描述对象及其相互之间关系的语言成分.3.定义类和建 ...
- Eclipse运行Maven命令时出现:-Dmaven.multiModuleProjectDirectory system property is not set. Check $M2_HOME environment variable and mvn script match.问题解决
错误: -Dmaven.multiModuleProjectDirectory system property is not set. Check $M2_HOME environment varia ...