[BZOJ2287]【POJ Challenge】消失之物(DP)
f[i][j]表示前i个物品,容量为j的方案数
c[i][j]表示不选第i个物品,容量为j的方案数
两个数组都可以压缩到一维
那么f[i][j] = f[i - 1][j] + f[i - 1][j - w[i]] (不放i与放i)
c数组的转移分多种情况
1.j < w[i]时,说明当前物品放不开,那么c[i][j] = f[n][j]
2.j >= w[i],c[i][j] = f[n][j] - c[i][j - w[i]]
因为c[i][j]表示不选物品i,容量为j的方案数,等于总的方案数减去选物品i,容量为j的方案数
而选物品i,容量为j的方案数就等于不选物品i,容量为j - w[i]的方案数,也就是补集
#include <cstdio>
#include <iostream>
#define N 2001 int n, m;
int f[N], c[N], w[N];
//f[i][j]表示前i个物品,容量为j的方案数
//c[i][j]表示不选第i个物品,容量为j的方案数
//两个数组都可以压缩到一维 inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
} int main()
{
int i, j;
n = read();
m = read();
f[0] = 1;
for(i = 1; i <= n; i++)
{
w[i] = read();
for(j = m; j >= w[i]; j--)
f[j] = (f[j] + f[j - w[i]]) % 10;
}
for(i = 1; i <= n; i++)
{
for(j = 0; j < w[i]; j++) c[j] = f[j];
for(j = w[i]; j <= m; j++)
c[j] = (f[j] - c[j - w[i]] + 10) % 10;
for(j = 1; j <= m; j++) printf("%d", c[j]);
puts("");
}
return 0;
}
[BZOJ2287]【POJ Challenge】消失之物(DP)的更多相关文章
- [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理
消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...
- bzoj2287 [POJ Challenge]消失之物
题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...
- 【bzoj2287】[POJ Challenge]消失之物 背包dp
题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...
- bzoj2287:[POJ Challenge]消失之物
思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...
- POJ Challenge消失之物
Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...
- BZOJ.2287.[POJ Challenge]消失之物(退背包)
BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...
- 【bozj2287】【[POJ Challenge]消失之物】维护多值递推
(上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...
- BZOJ 2287 【POJ Challenge】消失之物(DP+容斥)
2287: [POJ Challenge]消失之物 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 986 Solved: 572[Submit][S ...
- 背包DP【bzoj2287】: 【POJ Challenge】消失之物
2287: [POJ Challenge]消失之物 Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. &q ...
- bzoj2287【POJ Challenge】消失之物 缺一01背包
bzoj2287[POJ Challenge]消失之物 缺一01背包 链接 bzoj 思路 分治solve(l,r,arr)表示缺少物品\([l,r]\)的dp数组arr. 然后solve(l,mid ...
随机推荐
- github上ReadMe语法
大标题 =================================== 大标题一般显示工程名,类似html的\<h1\><br /> 你只要在标题下面跟上=====即可 ...
- HDU 1964 Pipes (插头DP,变形)
题意:给一个n*m的矩阵,每个格子都是必走的,且无障碍格子,每对格子之间都有一个花费,问哈密顿回路的最小花费. 思路: 这个和Formula1差不多,只是求得是最小花费,这只需要修改一下DP值为花费就 ...
- 机器学习之-奇异值分解(SVD)原理详解及推导
转载 http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充 ...
- Thread源码分析-java8
1.Thread特性分析 守护线程Daemon 定性:支持性线程,主要用于程序中后台调度以及支持性工作. 当JVM中不存在Daemon线程时,JVM将会退出. 将一个线程设定为Daemon的方法: 调 ...
- 利用python进行数据分析1_numpy的基本操作,建模基础
import numpy as np # 生成指定维度的随机多维数据 data=np.random.rand(2,3) print(data) print(type(data)) 结果: [[0.11 ...
- 行内元素的padding和margin是否无效
html中元素分为三种:块级元素.行内元素(也叫内联元素),内联块级元素. 常用块级元素:<div>.<p>.<h1>...<h6>.<ol> ...
- Cscope的使用(领略Vim + Cscope的强大魅力)
文章出处:http://blog.csdn.net/dengxiayehu/article/details/6330200 Cscope的使用(领略Vim + Cscope的强大魅力) 1.Cscop ...
- Js自学学习-笔记6-8
<!-- 第6-7课笔记 --> <!-- for循环 for(条件1:判断:变化)其实就是if嵌套 while do for循环简化版 可以用do while swith case ...
- shelll脚本,根据软链接,找到真实路径
[root@localhost tmp]# ls -l total lrwxrwxrwx root root Sep : abc -> /etc/passwd lrwxrwxrwx root r ...
- SQL 牛刀小试 1 —— 查询操作
#创建数据库create database ST CHARACTER set utf8;#创建用户create user ST identified by '19980510';#授权用户操作该数据库 ...