题意:

给一块n*m的田地,1代表肥沃,0代表贫瘠。

现在要求在肥沃的土地上种草,要求任何两个草都不能相邻。

问一共有多少种种草的方法。

种0棵草也是其中的一种方法。

n和m都不大于12.

思路:

状态压缩DP,dp[i][j]代表在第i行状态j一共有多少种可能的种植方法。

j是二进制转化而来的状态,0代表不种草,1代表种草。

dp[i]只受到两个限制,即dp[i-1]的某种状态,和当前土地的贫瘠状况。

只要保证&操作之后重复的为0就可以了

最后输出sum(dp[n][1...w])(w代表一共有w种可行的状态)

#include<stdio.h>
int pho[][];
int biao[];
int dp[][<<];
int may[<<];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
scanf("%d",&pho[i][j]);
if(pho[i][j])
{
pho[i][j]=;
}
else
{
pho[i][j]=;
}
}
}
for(int i=;i<=n;i++)
{
int tmp=pho[i][];
for(int j=;j<=m;j++)
{
tmp=tmp<<;
tmp+=pho[i][j];
}
biao[i]=tmp;
}
int num=;
for(int s=;s<(<<m);s++)
{
if((s&(s<<))==)
{
may[num++]=s;
}
}
for(int i=;i<num;i++)
{
if((may[i]&biao[])==)
{
dp[][i]=;
}
}
for(int i=;i<=n;i++)
{
for(int j=;j<num;j++)
{
for(int k=;k<num;k++)
{
if((may[k]&may[j])||(may[j]&biao[i]))
continue;
dp[i][j]+=dp[i-][k];
dp[i][j]%=;
}
}
}
int ans=;
for(int i=;i<num;i++)
{
ans+=dp[n][i];
ans%=;
}
printf("%d\n",ans);
return ;
}

POJ 3254 【状态压缩DP】的更多相关文章

  1. poj 3254 状态压缩DP

    思路:把每行的数当做是一个二进制串,0不变,1变或不变,找出所有的合法二进制形式表示的整数,即相邻不同为1,那么第i-1行与第i行的状态转移方程为dp[i][j]+=dp[i-1][k]: 这个方程得 ...

  2. POJ 3254 状态压缩 DP

    B - Corn Fields Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:65536KB    ...

  3. poj 3254(状态压缩+动态规划)

    http://poj.org/problem?id=3254 题意:有一个n*m的农场(01矩阵),其中1表示种了草可以放牛,0表示没种草不能放牛,并且如果某个地方放了牛,它的上下左右四个方向都不能放 ...

  4. POJ 1185 状态压缩DP(转)

    1. 为何状态压缩: 棋盘规模为n*m,且m≤10,如果用一个int表示一行上棋子的状态,足以表示m≤10所要求的范围.故想到用int s[num].至于开多大的数组,可以自己用DFS搜索试试看:也可 ...

  5. POJ 1185 状态压缩DP 炮兵阵地

    题目直达车:   POJ 1185 炮兵阵地 分析: 列( <=10 )的数据比较小, 一般会想到状压DP. Ⅰ.如果一行10全个‘P’,满足题意的状态不超过60种(可手动枚举). Ⅱ.用DFS ...

  6. poj 2923(状态压缩dp)

    题意:就是给了你一些货物的重量,然后给了两辆车一次的载重,让你求出最少的运输次数. 分析:首先要从一辆车入手,搜出所有的一次能够运的所有状态,然后把两辆车的状态进行合并,最后就是解决了,有两种方法: ...

  7. poj 2688 状态压缩dp解tsp

    题意: 裸的tsp. 分析: 用bfs求出随意两点之间的距离后能够暴搜也能够用next_permutation水,但效率肯定不如状压dp.dp[s][u]表示从0出发訪问过s集合中的点.眼下在点u走过 ...

  8. Mondriaan's Dream(POJ 2411状态压缩dp)

    题意:用1*2的方格填充m*n的方格不能重叠,问有多少种填充方法 分析:dp[i][j]表示i行状态为j时的方案数,对于j,0表示该列竖放(影响下一行的该列),1表示横放成功(影响下一列)或上一列竖放 ...

  9. poj 2411 状态压缩dp

    思路:将每一行看做一个二进制位,那么所有的合法状态为相邻为1的个数一定要为偶数个.这样就可以先把所有的合法状态找到.由于没一层的合法状态都是一样的,那么可以用一个数组保存.由第i-1行到第i行的状态转 ...

  10. poj 3254 状态压缩

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15285   Accepted: 8033 Desc ...

随机推荐

  1. NPM、nodeJS安装,grunt自动化构建工具学习总结

    一:安装 npm是随nodeJs安装包一起安装的包管理工具,能解决NodeJS代码部署上的很多问题: 常见的使用场景有以下几种: 允许用户从NPM服务器下载别人编写的第三方包到本地使用. 允许用户从N ...

  2. Mac OSX简单使用中会用到的

    选择操作系统(例如选择BootCamp分区的Windows):开机按住Option键直到磁盘图标出现后选择. 忘记本地账号密码:按着Command+R开机选择Recovered启动打开终端输入re ...

  3. 使用libsvm实现文本分类

    @Hcy(黄灿奕) 文本分类,首先它是分类问题,应该对应着分类过程的两个重要的步骤,一个是使用训练数据集训练分类器,另一个就是使用测试数据集来评价分类器的分类精度.然而,作为文本分类,它还具有文本这样 ...

  4. 机器学习在SAP Cloud for Customer中的应用

    关于机器学习这个话题,我相信我这个公众号1500多位关注者里,一定有很多朋友的水平比Jerry高得多.如果您看过我以前两篇文章,您就会发现,我对机器学习仅仅停留在会使用API的层面上. 使用Java程 ...

  5. 闲着蛋疼没事干,写个Mac端的Kcptun Client管理器

    原理: 执行一行脚本 输入服务器地址,端口,密码等做了图形化编辑 可以控制Kcptun是否正在运行 App已上传github https://github.com/nicky2k8/KcptunCli ...

  6. Graveyard LA3708

    白书第一章例题4 思维. 先固定一点不动,假设最后一共N个点,那么编号为0,1,...N-1, 0不动,原来的n个点分别占据i/n*N的位置(记为pos),移动到pos四舍五入的位置即可. 证明一:有 ...

  7. String系列之replaceAll方法替换.

    直接使用String类的replaceall方法的第一个参数并不是简单的字符串,而是一个正则表达式.在正则表达式中,英文点号(.)表示任意字符,所以你原先的写法会把所有字符都替换成空白. 转义使用所以 ...

  8. DP || HYSBZ 1207 打鼹鼠

    n*n的网格,有m个鼹鼠,t时间会有一只鼹鼠出现在(x,y)点处,如果机器人也在这个点就可以打到鼹鼠 机器人初始位置任意,每秒可以移动一格,问最多打到多少鼹鼠 *解法:f[i]表示前i只鼹鼠打了多少个 ...

  9. JSP页面通过c:forEach标签循环遍历List集合

    c:forEach>标签有如下属性: 属性 描述 是否必要 默认值items 要被循环的信息 否 无begin 开始的元素(0=第一个元素,1=第二个元素) 否 0end 最后一个元素(0=第一 ...

  10. Oracle中的for和while循环

    实例: beginfor i in 51..500 loop delete from test t where t.date=to_date('2016-07-01', 'yyyy-MM-dd') a ...