fft+manacher

fft都快忘了。。。

其实我们发现,这个问题是可以用fft做的,因为是回文子序列,所以我们直接自己和自己求卷积,然后扫描每个位置,注意是每个位置,因为包括奇数长度和偶数长度,f[i]为第i个位置上的对称字符的数量,那么一共就有(2^f[i])-1个回文子序列,因为是要不连续的,所以用manacher求出连续的就行了

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = , mod = ;
const double pi = acos(-);
int n, m, pos, mx, len, L;
complex<double> a[N], b[N];
int r[N], p[N], f[N];
ll pw[N];
ll ans;
char s[N], t[N];
void fft(complex<double> *a, int f)
{
for(int i = ; i < n; ++i) if(i < r[i]) swap(a[i], a[r[i]]);
for(int i = ; i < n; i <<= )
{
complex<double> t(cos(pi / i), f * sin(pi / i));
for(int p = i << , j = ; j < n; j += p)
{
complex<double> w(, );
for(int k = ; k < i; ++k, w *= t)
{
complex<double> x = a[j + k], y = w * a[j + k + i];
a[j + k] = x + y;
a[j + k + i] = x - y;
}
}
}
}
int main()
{
scanf("%s", t);
n = strlen(t);
s[] = '-';
s[len = ] = '#';
for(int i = ; i < n; ++i) s[++len] = t[i], s[++len] = '#';
for(int i = ; i <= len; ++i)
{
if(mx > i) p[i] = min(mx - i, p[ * pos - i]);
while(s[i + p[i]] == s[i - p[i]]) ++p[i];
if(i + p[i] > mx)
{
pos = i;
mx = i + p[i];
}
ans -= p[i] >> ;
}
len = n;
m = * n;
for(n = ; n <= m; n <<= ) ++L;
for(int i = ; i < n; ++i) r[i] = (r[i >> ] >> ) | ((i & ) << (L - ));
for(int i = ; i < len; ++i) a[i] = (t[i] == 'a' ? : ), b[i] = (t[i] == 'b' ? : );
fft(a, );
fft(b, );
for(int i = ; i < n; ++i) a[i] *= a[i], b[i] *= b[i];
fft(a, -);
fft(b, -);
pw[] = 1ll;
for(int i = ; i <= n; ++i) pw[i] = (pw[i - ] << 1ll) % mod;
for(int i = ; i < m - ; ++i)
{
int x = (int)(a[i].real() / n + 0.5), y = (int)(b[i].real() / n + 0.5);
ans = (ans + pw[(x + y + ) >> ] - ) % mod;
}
printf("%lld\n", ans);
return ;
}

bzoj3160的更多相关文章

  1. 【bzoj3160】【xsy1726】万径人踪灭

    [bzoj3160]万径人踪灭 题意 给定一个由'a'和'b'构成的字符串,求不连续回文子序列的个数. \(n\leq 100000\) 分析 还是蛮不错的. 这道题基本上是自己想到的. 除了没有利用 ...

  2. 【BZOJ3160】万径人踪灭(FFT,Manacher)

    [BZOJ3160]万径人踪灭(FFT,Manacher) 题面 BZOJ 题解 很容易想到就是满足条件的子序列个数减去回文子串的个数吧... 至于满足条件的子序列 我们可以依次枚举对称轴 如果知道关 ...

  3. BZOJ3160 万径人踪灭 字符串 多项式 Manachar FFT

    原文链接http://www.cnblogs.com/zhouzhendong/p/8810140.html 题目传送门 - BZOJ3160 题意 给你一个只含$a,b$的字符串,让你选择一个子序列 ...

  4. BZOJ3160 万径人踪灭(FFT+manacher)

    容易想到先统计回文串数量,这样就去掉了不连续的限制,变为统计回文序列数量. 显然以某个位置为对称轴的回文序列数量就是2其两边(包括自身)对称相等的位置数量-1.对称有啥性质?位置和相等.这不就是卷积嘛 ...

  5. 【bzoj3160】 万径人踪灭

    http://www.lydsy.com/JudgeOnline/problem.php?id=3160 (题目链接) 题意 给定一个由'a'和'b'构成的字符串,求不连续回文子序列的个数. Solu ...

  6. 【BZOJ3160】万径人踪灭 Manacher+FFT

    [BZOJ3160]万径人踪灭 Description Input Output Sample Input Sample Output HINT 题解:自己想出来1A,先撒花~(其实FFT部分挺裸的) ...

  7. BZOJ3160【万径人踪灭】 【FFT】

    ..恩 打了四五遍 不会也背出来了.. BZOJ3160 [听说时限紧?转C++的优势么?] 上AC代码 fft /*Problem: 3160 User: cyz666 Language: C++ ...

  8. [bzoj3160]万径人踪灭_FFT_Manacher

    万径人踪灭 bzoj-3160 题目大意:给定一个ab串.求所有的子序列满足:位置和字符都关于某条对称轴对称而且不连续. 注释:$1\le n\le 10^5$. 想法: 看了大爷的题解,OrzOrz ...

  9. BZOJ3160万径人踪灭

    Description Input & Output & Sample Input & Sample Output HINT 题解: 题意即求不连续但间隔长度对称的回文串个数. ...

  10. BZOJ3160: 万径人踪灭

    设a[i]=bool(s[i]=='a'),b[i]=bool(s[i]=='b'),考虑a和a.b和b的卷积,由于卷积是对称的,就可以统计出不连续回文子串个数了.可能说得比较简略.再用manache ...

随机推荐

  1. hdu 2686最小费用最大流问题

    #include<stdio.h> #include<queue> #include<string.h> using namespace std; #define ...

  2. 洛谷P3406 海底高铁

    题目背景 大东亚海底隧道连接着厦门.新北.博艾.那霸.鹿儿岛等城市,横穿东海,耗资1000亿博艾元,历时15年,于公元2058年建成.凭借该隧道,从厦门可以乘坐火车直达台湾.博艾和日本,全程只需要4个 ...

  3. 【BZOJ2006】超级钢琴(RMQ,priority_queue)

    题意: 思路: 用三元组(i, l, r)表示右端点为i,左端点在[l, r]之间和最大的区间([l, r]保证是对于i可行右端点区间的一个子区间),我们用堆维护一些这样的三元组. 堆中初始的元素为每 ...

  4. 【frameset】frameset设置不能拖动

    <frameset rows='20%,*' >           <!--  row 行 col 列    分行列要为rows  cols  --> <frame s ...

  5. 导师高茂源:用CODEX创新方法破解西方创新“秘密”(转)

    高茂源,“CODEX创新体系”的创立者,精一学社的创业导师.“CODEX”是Copy.Optimize.Dimension.Ecosystem.Extra五个单词的缩写,该体系精炼了现在世界上流行的创 ...

  6. ACM-ICPC 2018 南京赛区网络预赛 L && BZOJ 2763 分层最短路

    https://nanti.jisuanke.com/t/31001 题意 可以把k条边的权值变为0,求s到t的最短路 解析  分层最短路  我们建立k+1层图 层与层之间边权为0,i 向 i+1层转 ...

  7. freeswitch对媒体的处理的三种方式

    一.默认方式:媒体通过freeswitch, RTP被freeswtich转发, freeswitch控制编码的协商并在协商不一致时提供语音编码转换能力, 支持录音,二次拨号等.   二.代理模式: ...

  8. GO语言 --socket.io

    socket.io是对websocket的封装以及扩展, 可以跨平台使用, 具体可看官网.. GO语言实现: package main import ( "github.com/googol ...

  9. VM Workstation的Unity Mode有什么用

    正常情况下,如果我启动了一个VM Workstaion的虚拟机,比如是一个Linux系统,并且没运行任何软件,进入Unity mode之后,我真实系统的左下角会有一个虚拟机的图标 点击这个图标可以打开 ...

  10. webservice0基础

    在学习webservice的时候,常常将ns和url花了好久时间才理解过来,这里备份下. 首先定义接口: @WebService public interface IService { @WebRes ...