题目链接:

B. Mashmokh and ACM

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Mashmokh's boss, Bimokh, didn't like Mashmokh. So he fired him. Mashmokh decided to go to university and participate in ACM instead of finding a new job. He wants to become a member of Bamokh's team. In order to join he was given some programming tasks and one week to solve them. Mashmokh is not a very experienced programmer. Actually he is not a programmer at all. So he wasn't able to solve them. That's why he asked you to help him with these tasks. One of these tasks is the following.

A sequence of l integers b1, b2, ..., bl (1 ≤ b1 ≤ b2 ≤ ... ≤ bl ≤ n) is called good if each number divides (without a remainder) by the next number in the sequence. More formally  for all i (1 ≤ i ≤ l - 1).

Given n and k find the number of good sequences of length k. As the answer can be rather large print it modulo 1000000007(10^9 + 7).

Input
 

The first line of input contains two space-separated integers n, k (1 ≤ n, k ≤ 2000).

Output
 

Output a single integer — the number of good sequences of length k modulo 1000000007 (10^9 + 7).

Examples
 
input
3 2
output
5
input
6 4
output
39
input
2 1
output
2
Note

In the first sample the good sequences are: [1, 1], [2, 2], [3, 3], [1, 2], [1, 3].

题意

给出这么多数[1,n],问能形成长为l的数列满足b[i]|b[i+1]的方案数;

思路

dp[i][j]表示长为i,以j结尾的方案数,

dp[i+1][j]=∑dp[i][k],k为j的因数;

AC代码

#include <bits/stdc++.h>
using namespace std;
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
const LL mod=1e9+;
const double PI=acos(-1.0);
const int inf=0x3f3f3f3f;
const int N=2e5+;
LL dp[][];
int main()
{
int n,k;
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)
{
dp[][i]=;
}
for(int i=;i<=k;i++)
{
Rjep(n)
{
for(int x=;x*j<=;x++)
{
dp[i+][x*j]+=dp[i][j];
dp[i+][x*j]%=mod;
}
}
}
LL ans=;
for(int i=;i<=n;i++)
{
ans+=dp[k][i];
ans%=mod;
}
cout<<ans<<"\n"; return ;
}

codeforces 414B B. Mashmokh and ACM(dp)的更多相关文章

  1. 【codeforces 415D】Mashmokh and ACM(普通dp)

    [codeforces 415D]Mashmokh and ACM 题意:美丽数列定义:对于数列中的每一个i都满足:arr[i+1]%arr[i]==0 输入n,k(1<=n,k<=200 ...

  2. Codeforces Round #240 (Div. 1) B. Mashmokh and ACM DP

                                                 B. Mashmokh and ACM                                     ...

  3. B. Mashmokh and ACM(dp)

    http://codeforces.com/problemset/problem/414/B B. Mashmokh and ACM time limit per test 1 second memo ...

  4. [Codeforces 865C]Gotta Go Fast(期望dp+二分答案)

    [Codeforces 865C]Gotta Go Fast(期望dp+二分答案) 题面 一个游戏一共有n个关卡,对于第i关,用a[i]时间通过的概率为p[i],用b[i]通过的时间为1-p[i],每 ...

  5. [CodeForces - 1225E]Rock Is Push 【dp】【前缀和】

    [CodeForces - 1225E]Rock Is Push [dp][前缀和] 标签:题解 codeforces题解 dp 前缀和 题目描述 Time limit 2000 ms Memory ...

  6. [Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT)

    [Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT) 题面 给出一个\(n\)个点\(m\)条边的有向图(可能有环),走每条边需要支付一个价格\(c_i ...

  7. Codeforces 414B Mashmokh and ACM

    http://codeforces.com/problemset/problem/414/B 题目大意: 题意:一个序列B1,B2...Bl如果是好的,必须满足Bi | Bi + 1(a | b 代表 ...

  8. codeforces D.Mashmokh and ACM

    题意:给你n和k,然后找出b1, b2, ..., bl(1 ≤ b1 ≤ b2 ≤ ... ≤ bl ≤ n),并且对所有的bi+1%bi==0,问有多少这样的序列? 思路:dp[i][j] 表示长 ...

  9. CodeForces 415D Mashmokh and ACM

    $dp$. 记$dp[i][j]$表示已经放了$i$个数字,并且第$i$个数字放了$j$的方案数.那么$dp[i][j] = \sum\limits_{k|j}^{}  {dp[i - 1][k]}$ ...

随机推荐

  1. 记录一下 ps命令找出线程占用cpu情况

    https://blog.csdn.net/xnn2s/article/details/11865339

  2. Codeforces 451 E Devu and Flowers

    Discription Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th ...

  3. matlab安装及破解

    Matlab安装及破解: 笔者最近要做一些和建模相关的事,故此需要安装Matlab2017版.在此做下笔记. 网盘链接: 链接:https://pan.baidu.com/s/1lN8C7TDFjSV ...

  4. java 基础 5 String StringBuffer StringBuilder

    String是不可变的,原因 1是可以缓存hash值,因为String的hash值经常被使用,例如String用作HashMap等.不可变特性  使得hash值不变,因此只需要进行一次计算: 2Str ...

  5. 成长笔记 - mysql-5.5.25-winx64安装步骤(及密码修改问题)

    操作系统:Windows 7 64位 下载地址: http://download.mysql.cn/src/2012/0602/5611.html 1. 将mysql-5.5.25-winx64.zi ...

  6. 数据库系统学习(九)-嵌入式SQL语言之基本技巧

    第九讲 嵌入式SQL语言之基本技巧 901 什么是嵌入式SQL语言 交互式SQL语言的局限性 嵌入式SQL语言 交互式和嵌入式语言的对比 高级语言中使用嵌入式语言需要解决的问题 902 程序与数据库连 ...

  7. hdoj-1856-More is better【并查集】

    More is better Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 327680/102400 K (Java/Others) To ...

  8. 生活娱乐 WIFI机器人(某机器发烧友自己动手做一台)

    某机器发烧友自己动手做一台WIFI机器人,以下是这位发烧友的自述!让我们一起来分享他的劳动成果-- 在经历了十多天的疯狂淘宝.组装.调试.拆卸.再组装.再调试的过程后,俺的Wifi Robot终于于2 ...

  9. LRUCache 具体解释

    LRU的基本概念: LRU是Least Recently Used的缩写,最近最少使用算法. Java 实现LRUCache 1.基于LRU的基本概念,为了达到按最近最少使用排序.能够选择HashMa ...

  10. CentOS安装Openfire服务

    原文::http://xiao987334176.blog.51cto.com/2202382/979677 系统是全新新安装的系统.版本号是Centos 5.6 x86 同步北京时间 # ntpda ...