【题目链接】

点击打开链接

【算法】

px + qy不能表示的最大整数为 pq - p - q

证明见这篇博客,过程很详细,推荐阅读 :

https://blog.csdn.net/qwerty1125/article/details/78661916

【代码】

var
a,b : int64;
begin
read(a,b);
writeln(a*b-a-b);
end.

【NOIP2017Day1T1】 小凯的疑惑的更多相关文章

  1. 【比赛】NOIP2017 小凯的疑惑

    找规律:ans=a*b-a-b 证明:(可见 体系知识) gcd(A, B) = 1 → lcm(A, B) = AB 剩余类,把所有整数划分成m个等价类,每个等价类由相互同余的整数组成 任何数分成m ...

  2. Luogu [P3951] 小凯的疑惑

    题目详见:[P3951]小凯的疑惑 首先说明:此题为一道提高组的题.但其实代码并没有提高组的水平.主要考的是我们的推断能力,以及看到题后的分析能力. 分析如下: 证明当k>ab-a-b时,小凯可 ...

  3. NOIP 2017 小凯的疑惑

    # NOIP 2017 小凯的疑惑 思路 a,b 互质 求最大不能表示出来的数k 则k与 a,b 互质 这里有一个结论:(网上有证明)不过我是打表找的规律 若 x,y(设x<y) 互质 则 : ...

  4. luogu 3951 小凯的疑惑

    noip2017 D1T1 小凯的疑惑 某zz选手没有看出这道结论题,同时写出了exgcd却不会用,只能打一个哈希表骗了30分 题目大意: 两个互质的正整数a和b,求一个最小的正整数使这个数无法表示为 ...

  5. 2017提高组D1T1 洛谷P3951 小凯的疑惑

    洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...

  6. P3951 小凯的疑惑

    P3951 小凯的疑惑 题解 题意也就是求解不能用 ax+by 表示的最大数 ans(a,b,x,y,都是正整数) 给定 a ( =7 ) ,  b ( =3 ) 我们可以把数轴非负半轴上的数按照a的 ...

  7. luoguP3951 小凯的疑惑/P2662 牛场围栏

    其实就是当年sxy给我讲的墨墨的等式,只是当时比较菜听得似懂非懂. 小凯的疑惑 去年noipday1t1,当时随便猜了个结论结果猜对了,现在瞎证一下,答案是a*b-a-b. 设a为a,b中较小的一个, ...

  8. 洛谷 P3951 小凯的疑惑 找规律

    目录 题面 题目链接 题目描述 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例: 输出样例: 说明 思路 证明 AC代码 include<bits/stdc++.h> 题面 ...

  9. 题解 P3951 小凯的疑惑

    P3951 小凯的疑惑 数论极菜的小萌新我刚看这题时看不懂exgcd做法的题解,后来在网上找到了一篇博客,感觉代码和推导都更加清新易懂,于是在它的基础上写了题解qwq 分析 两数互质,且有无限个,想到 ...

  10. 洛谷 P3951 NOIP 2017 小凯的疑惑

    洛谷 P3951 NOIP 2017 小凯的疑惑 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付 ...

随机推荐

  1. luogu P1043 数字游戏

    题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分 ...

  2. 洛谷P1352 没有上司的舞会

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

  3. Junit4 断言新方法

    话不多少说,直接上代码 package ASSERTTEST; import org.junit.Assert; import org.hamcrest.*;import org.junit.Test ...

  4. java集合系列之LinkedList源码分析

    java集合系列之LinkedList源码分析 LinkedList数据结构简介 LinkedList底层是通过双端双向链表实现的,其基本数据结构如下,每一个节点类为Node对象,每个Node节点包含 ...

  5. 如何快速的知道Maven插件的命令行输入参数

    用命令行使用Maven的插件时,-D表示属性的输入,-P表示构建配置文件的输入. 比如要使用package生命周期阶段对Application项目进行打包jar时,查找方式如下: 1.由于packag ...

  6. PYTHON 源码

    http://www.wklken.me/index2.html http://blog.csdn.net/dbzhang800/article/details/6683440

  7. 【kotlin】报错:required:LIst<XXX> found:List<Unit>此类型的问题

    出现问题如下: 解决方式如下: 解决思路:上面报出来的错误很明显,就是说想要的是List<XXX>类型但是给的却是List<Unit>类型,给的不是它想要的嘛 关键就是解决问题 ...

  8. memcached优化方法

    工作原理     基本概念:slab,page.chunk.     slab,是一个逻辑概念. 它是在启动memcached实例的时候预处理好的,每一个slab相应一个chunk size.也就是说 ...

  9. mybatis 一对一映射

    xml <mapper namespace="com.oracle.dao.one2oneDao"> <sql id="personColum" ...

  10. cs6 mac 破解方法

    Photoshop CS6 重点功能: 1.Photoshop CS6 包含Photoshop CS6和Photoshop CS6 Extended中所有功能,快去试一试3D图像编辑和Photosho ...