除法分块。

猜想: 记 \(g(x)=\lfloor k / \lfloor k / x\rfloor \rfloor\),则对于 \(i \in [x,g(x)]\),\(\lfloor k / i \rfloor\) 都相等。

证明: 显然函数 \(y=k/x\) 单调递减。显然 \(\lfloor k/x \rfloor \leq k/x\)。则:

  1. \(g(x)=\lfloor k / \lfloor k / x\rfloor \rfloor \geq \lfloor k/(k/x) \rfloor=x \Rightarrow \lfloor k/g(x) \rfloor \leq \lfloor k/x \rfloor\);
  2. \(\lfloor k/g(x) \rfloor=\lfloor k/\lfloor k / \lfloor k / x\rfloor \rfloor \rfloor \geq \lfloor k/( k / \lfloor k / x\rfloor ) \rfloor=\lfloor k/x \rfloor\)。

于是 \(\lfloor k/g(x) \rfloor=\lfloor k/x \rfloor\)。则显然对于 \(i \in [x,g(x)]\),\(\lfloor k / i \rfloor\) 都相等。我们还可以知道 \(\lfloor k/(g(x)+1) \rfloor < \lfloor k/g(x) \rfloor=\lfloor k/x \rfloor\)。

回到问题,\(ans=\sum_{i=1}^n k \bmod i=nk-\sum_{i=1}^{\min(n,k)} \lfloor k/i \rfloor \times i\),当 \(\lfloor k/i \rfloor\) 相等时对 \(i\) 用等差数列求和就好了。

#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
int n, k, lst, end;
ll ans=0;
int main(){
cin>>n>>k;
for(int i=1; i<=min(k,n); i=end+1){
lst = k / i;
end = min(n, k / lst);
ans += (ll)lst * (end+i) * (end-i+1) / 2;
}
cout<<(ll)n*k-ans<<endl;
return 0;
}

luogu2261 [CQOI2007]余数求和的更多相关文章

  1. Luogu2261[CQOI2007]余数求和 【数论】By cellur925

    题目传送门 省选题竟然送了这么多分,60分直接暴力算就行.(算了,07年的省选) 数学题嘛,通常我们需要把式子展开,然后寻找一些性质化简=w=. 展开式以及寻找规律的过程lyd老师讲的很清楚T_T,放 ...

  2. 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)

    上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...

  3. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  4. [洛谷P2261] [CQOI2007]余数求和

    洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...

  5. [Luogu 2261] CQOI2007 余数求和

    [Luogu 2261] CQOI2007 余数求和 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \( ...

  6. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  7. 题解 P2261【[CQOI2007]余数求和】

    P2261[[CQOI2007]余数求和] 蒟蒻终于不看题解写出了一个很水的蓝题,然而题解不能交了 虽然还看了一下自己之前的博客 题目要求: \[\sum_{i=1}^{n}{k \bmod i} \ ...

  8. [Luogu P2261] [CQOI2007]余数求和 (取模计算)

    题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...

  9. P2261 [CQOI2007]余数求和 【整除分块】

    一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$  ...

随机推荐

  1. python之使用request模块发送post和get请求

    import requestsimport json #发送get请求并得到结果# url = 'http://api.nnzhp.cn/api/user/stu_info?stu_name=小黑马 ...

  2. C. Jon Snow and his Favourite Number DP + 注意数值大小

    http://codeforces.com/contest/768/problem/C 这题的数值大小只有1000,那么可以联想到,用数值做数组的下标,就是类似于计数排序那样子.. 这样就可以枚举k次 ...

  3. Java GC基础

    Java的垃圾回收机制负责回收无用对象占据的内存资源,但是有特殊情况:假定对象不是使用new关键字获得了一块儿“特殊”的内存区域,

  4. Android程序打包为APK

    Andriod安装包文件(Android Package),简称APK,后缀名为.apk. 1.生成未签名的安装包 Build -> Build Bundle(s)/APK(s) -> B ...

  5. 必看的dockerfile禁忌与建议!

    直接上对照组(看第三个run) test1 FROM centos MAINTAINER ** ​ RUN yum -y update RUN yum -y install wget ​ RUN wg ...

  6. whereis参数

    -b  只找二进制文件 -m 只找在帮助文件manual路径下的文件 -s 只找原文件 -u 没有帮助文件的文件 whereis passwd

  7. 搜索模板elasticsearch

    搜索: like 对中文分词效率与支持都不太友好elasticsearch 实时的(效率高).分布式(可扩展)的搜索和分析引擎,基于Lucene全文搜索引擎工具包,算法基于倒排索引算法(eg:一篇文章 ...

  8. Oracle ORA

    ORA-00001: 违反唯一约束条件 (.) 错误说明:当在唯一索引所对应的列上键入重复值时,会触发此异常. ORA-00017: 请求会话以设置跟踪事件 ORA-00018: 超出最大会话数 OR ...

  9. umask命令

    umask——显示.设置文件的缺省权限 the user file-creation mask 命令所在路径:Shell内置命令 示例1:显示缺省权限 # umask -S 参数S的作用是以rwx形式 ...

  10. 一行命令杀掉defunct进程

    一行命令杀掉defunct进程 今天在杀掉defunc过程中一直搞不完,索性写一行命令,注意先看懂谨慎使用 ps -ef|grep defunct|awk '{print " ps -ef| ...