Dancing Stars on Me

Problem Description

The sky was brushed clean by the wind and the stars were cold in a black sky. What a wonderful night. You observed that, sometimes the stars can form a regular polygon in the sky if we connect them properly. You want to record these moments by your smart camera. Of course, you cannot stay awake all night for capturing. So you decide to write a program running on the smart camera to check whether the stars can form a regular polygon and capture these moments automatically.

Formally, a regular polygon is a convex polygon whose angles are all equal and all its sides have the same length. The area of a regular polygon must be nonzero. We say the stars can form a regular polygon if they are exactly the vertices of some regular polygon. To simplify the problem, we project the sky to a two-dimensional plane here, and you just need to check whether the stars can form a regular polygon in this plane.

 
Input
The first line contains a integer T

indicating the total number of test cases. Each test case begins with an integer n

, denoting the number of stars in the sky. Following n

lines, each contains 2

integers xi,yi

, describe the coordinates of n

stars.

1≤T≤300

3≤n≤100

−10000≤xi,yi≤10000

All coordinates are distinct.

 
Output
For each test case, please output "`YES`" if the stars can form a regular polygon. Otherwise, output "`NO`" (both without quotes).
 
Sample Input
3
3
0 0
1 1
1 0
4
0 0
0 1
1 0
1 1
5
0 0
0 1
0 2
2 2
2 0
 
Sample Output
NO
YES
NO
 
题意:给你n个点(整点),问你这n个点能否组成正n边形
题解:因为是整点,所有只能是正方形,判断就是了
 
///
#include<bits/stdc++.h>
using namespace std ;
typedef long long ll;
#define mem(a) memset(a,0,sizeof(a))
#define meminf(a) memset(a,127,sizeof(a)); inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){
if(ch=='-')f=-;ch=getchar();
}
while(ch>=''&&ch<=''){
x=x*+ch-'';ch=getchar();
}return x*f;
}
//**************************************** const int inf=;
#define maxn 150
struct node
{
int x;
int y;
}p[maxn];
int d[];
int n,x[maxn],y[maxn];
int dis(node a,node b)
{
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
bool test()
{
int ans=inf;
d[]=dis(p[],p[]);
d[]=dis(p[],p[]);
d[]=dis(p[],p[]);
d[]=dis(p[],p[]);
d[]=dis(p[],p[]);
d[]=dis(p[],p[]);
sort(d,d+);
if(d[]==d[]&&d[]==d[]&&d[]==d[]&&*d[]==d[]&&d[]==d[])
{
return ;
}
return ;
}
int main(){
int T=read();
while(T--){
scanf("%d",&n);
for(int i=;i<n;i++){
scanf("%d%d",&x[i],&y[i]);
}
if(n!=){
cout<<"NO"<<endl;
}
else {
for(int i=;i<;i++){
node aa;
aa.x=x[i],aa.y=y[i];
p[i]=aa;
}
if(test())cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}
}
return ;
}

代码

HDU 5533/ 2015长春区域 G.Dancing Stars on Me 暴力的更多相关文章

  1. HDU 5536/ 2015长春区域 J.Chip Factory Trie

    Chip Factory Problem Description John is a manager of a CPU chip factory, the factory produces lots ...

  2. HDU 5534/ 2015长春区域H.Partial Tree DP

    Partial Tree Problem Description In mathematics, and more specifically in graph theory, a tree is an ...

  3. Travel(HDU 5441 2015长春区域赛 带权并查集)

    Travel Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Su ...

  4. HDU 5538/ 2015长春区域 L.House Building 水题

    题意:求给出图的表面积,不包括底面 #include<bits/stdc++.h> using namespace std ; typedef long long ll; #define ...

  5. hdu 5443 (2015长春网赛G题 求区间最值)

    求区间最值,数据范围也很小,因为只会线段树,所以套了线段树模板=.= Sample Input3110011 151 2 3 4 551 21 32 43 43 531 999999 141 11 2 ...

  6. hdu 5446(2015长春网络赛J题 Lucas定理+中国剩余定理)

    题意:M=p1*p2*...pk:求C(n,m)%M,pi小于10^5,n,m,M都是小于10^18. pi为质数 M不一定是质数 所以只能用Lucas定理求k次 C(n,m)%Pi最后会得到一个同余 ...

  7. 2015ACM/ICPC亚洲区长春站 G hdu 5533 Dancing Stars on Me

    Dancing Stars on Me Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  8. hdu 5533 Dancing Stars on Me 水题

    Dancing Stars on Me Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.p ...

  9. hdu 5533 Dancing Stars on Me

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 Dancing Stars on Me Time Limit: 2000/1000 MS (Ja ...

随机推荐

  1. js基础---数据类型转换

    js中数据类型: 简单数据类型: number:233,-34,0x23,023 string:"hello"或者'hello' boolean:true.false undefi ...

  2. JS高级——原型链

    构造函数 构造函数是特殊的函数,里面没有returen返回值 new的过程中,会自动将对象返回,不需要return new的过程中,会执行函数中的代码,会将创建的对象赋值给构造函数中的this 基本概 ...

  3. C# 配置文件ini操作类

    // [ DllImport ( "kernel32" ) ] //private static extern long WritePrivateProfileString ( s ...

  4. 多线程-实现Runnable接口

    当一个任务或者函数多个线程同时调用时仅仅继承Thread是不行的.需要实现Runnable接口. 好处: 1.将线程的任务从线程的子类中分离出来,进行了单独的封装. 按照面向对象的思想将任务封装成对象 ...

  5. illumina测序原理

    一些常用基本概念的介绍: flowcell流动池 是指Illumina测序时,测序反应发生的位置,1个flowcell含有8条lane lane通道 每一个flowcell上都有8条泳道,用于测序反应 ...

  6. CAD把实体放到当前选择集中

    主要用到函数说明: _DMxDrawX::AddCurrentSelect 把实体放到当前选择集中,详细说明如下: 参数 说明 LONGLONG lId 实体id VARIANT_BOOL isSho ...

  7. Android组件化最佳实践 ARetrofit原理

    ARetrofit原理讲原理之前,我想先说说为什么要ARetrofit.开发ARetrofit这个项目的思路来源其实是Retrofit,Retrofit是Square公司开发的一款针对Android网 ...

  8. Labview学习笔记(三)

    一.数据 1.数值控件 (1)数值控件 根据不同的模拟状态,放置不同控件 (2)显示格式 为了程序显示,需要设置数值型控件的表示法.数值范围.显示格式等属性. 一般来说,长度越长,则可以表示的数值范围 ...

  9. Shell 脚本编程 基本语法:

    Shell 脚本编程语法: 注: 文章来源 http://www.cnblogs.com/yunquan/p/6821850.html 视频来源:https://www.bilibili.com/vi ...

  10. centos中安装jdk

    1.上传jdk安装文件到根目录 2.解压到相关目录 (1)创建相应目录mkdir -p /usr/local/java (2)解压 tar -zxvf jdk-7u80-linux-x64.tar.g ...