题目背景

原 维护队列 参见P1903

题目描述

某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(

我们来简化一下这个游戏的规则

有nnn次点击要做,成功了就是o,失败了就是x,分数是按combo计算的,连续aaa个combo就有a×aa\times aa×a分,combo就是极大的连续o

比如ooxxxxooooxxx,分数就是2×2+4×4=4+16=202 \times 2 + 4 \times 4 = 4 +16=202×2+4×4=4+16=20。

Sevenkplus闲的慌就看他打了一盘,有些地方跟运气无关要么是o要么是x,有些地方o或者x各有50%的可能性,用?号来表示。

比如oo?xx就是一个可能的输入。 那么WJMZBMR这场osu的期望得分是多少呢?

比如oo?xx的话,?o的话就是oooxx => 9,是x的话就是ooxxx => 4

期望自然就是(4+9)/2=6.5(4+9)/2 =6.5(4+9)/2=6.5了

输入输出格式

输入格式:

第一行一个整数nnn,表示点击的个数

接下来一个字符串,每个字符都是o,x,?中的一个

输出格式:

一行一个浮点数表示答案

四舍五入到小数点后444位

如果害怕精度跪建议用long double或者extended

输入输出样例

输入样例#1:
复制

4
????
输出样例#1: 复制

4.1250

说明

osu很好玩的哦

WJMZBMR技术还行(雾),x基本上很少呢

题解

这个题有点意思。

dp[i]代表到第i个位置总权值的期望。

f[i]代表到第i个位置连续的o的长度。

然后转移的时候分情况:

s[i]=='x'

dp[i]=dp[i-1];f[i]=0;

s[i]=='o'

dp[i]=(g[i-1]+1)^2=g[i-1]^2+2*g[i-1]+1=f[i-1]+2*g[i-1]+1;

f[i]=f[i-1]+1;

s[i]=='?'

dp[i]=0.5*(f[i-1]+2*g[i-1]+1)+0.5*f[i-1];

f[i]=(g[i-1]+1)*0.5+0*0.5;

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int n;
char s[N];
double dp[N],f[N];
int main(){
scanf("%d",&n);
scanf("%s",s+);
for(int i=;i<=n;i++){
if(s[i]=='?'){
f[i]=(f[i-]+1.0)/2.0;
dp[i]=dp[i-]+0.5+f[i-];
}
if(s[i]=='o'){
f[i]=f[i-]+1.0;
dp[i]=dp[i-]+2.0*f[i-]+1.0;
}
if(s[i]=='x'){
dp[i]=dp[i-];
f[i]=0.0;
}
}
printf("%.4lf",dp[n]);
return ;
}

luogu P1365 WJMZBMR打osu! / Easy(期望DP)的更多相关文章

  1. 洛谷P1365 WJMZBMR打osu! / Easy——期望DP

    题目:https://www.luogu.org/problemnew/show/P1365 平方和怎样递推? 其实就是 (x+1)^2 = x^2 + 2*x + 1: 所以我们要关注这里的 x — ...

  2. Luogu P1365 WJMZBMR打osu! / Easy

    概率期望专题首杀-- 毒瘤dp 首先根据数据范围推断出复杂度在O(n)左右 但不管怎么想都是n^2-- 晚上躺在床上吃东西的时候(误)想到之前有几道dp题是通过前缀和优化的 而期望的可加性又似乎为此创 ...

  3. [BZOJ4318] WJMZBMR打osu! / Easy (期望DP)

    题目链接 Solution Wa,我是真的被期望折服了,感觉这道题拿来练手正好. DP的难度可做又巧妙... 我们定义: \(f[i]\) 代表到第 \(i\) 次点击的时候的最大答案. \(g[i] ...

  4. 洛谷 P1365 WJMZBMR打osu! / Easy

    题目背景 原 维护队列 参见P1903 题目描述 某一天\(WJMZBMR\)在打\(osu~~~\)但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有\(n\)次点击要做,成功 ...

  5. P1365 WJMZBMR打osu! / Easy

    题目背景 原 维护队列 参见P1903 题目描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有 nnn 次点击要做,成功了就是o,失败了 ...

  6. WJMZBMR打osu! / Easy

    WJMZBMR打osu! / Easy 有一个由o,x,?组成的长度为n的序列,?等概率变为o,x,定义序列权值为连续o的长度o的平方之和,询问权值的期望, 解 注意到权值不是简单的累加关系,存在平方 ...

  7. P1365 WJMZBMR打osu! / Easy-洛谷luogu

    传送门 题目背景 原 维护队列 参见P1903 题目描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有nn次点击要做,成功了就是o,失败 ...

  8. 【BZOJ3450】Easy [期望DP]

    Easy Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 某一天WJMZBMR在打osu~~ ...

  9. 【BZOJ3450】Tyvj1952 Easy 期望DP

    [BZOJ3450]Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是 ...

随机推荐

  1. 从源码中查看当前android版本

    从文件build/core/version_defaults.mk查找PLATFORM_VERSION例如:PLATFORM_VERSION.OPM1 := 8.1.0

  2. struts 中数据处理的3中方式

    方式一: 获取servletapi中的对象 方式二: struts中封装的对象 方式三: 实现接口 方式一和方式二的区别 方式一需要额外引入包或者是方式二实现不了的功能,比如:获取url 因为方式二只 ...

  3. 使用jd-gui+javassist修改已编译好的class文件

    1.原因:因为公司代码管理不当导致源码丢失,只好已编译好的class文件进行修改 2.首先先在myeclipse中新建java项目并导入javassist 3.将需要修改的文件放到指定文件夹下 4.. ...

  4. SQL SERVER-数据库的远程访问解决办法

    除了下面的这个RemoteDacEnabled更改为true之后,还要把防火墙关闭,才能通过IP地址访问数据库 来自为知笔记(Wiz)

  5. Tarjan强联通分量【模板】

    #include <algorithm> #include <cstdio> using namespace std; ); int n,m,v,u; int edgesum, ...

  6. C++继承中析构函数 构造函数的调用顺序以及虚析构函数

    首先说说构造函数.大家都知道构造函数里就能够调用成员变量,而继承中子类是把基类的成员变成自己的成员,那么也就是说子类在构造函数里就能够调用基类的成员了,这就说明创建子类的时候必须先调用基类的构造函数, ...

  7. hdoj 1013Digital Roots

     /*Digital Roots Problem Description The digital root of a positive integer is found by summing th ...

  8. 数据库中的java.sql.Timestamp转换成Date

    查询数据库中的时间类型为 java.sql.Timestamp 保存在json中需要格式化 自定义工具类  DateJsonValueProcessor package com.rom.util; i ...

  9. JStorm之Topology调度

      topology在服务端提交过程中,会经过一系列的验证和初始化:TP结构校验.创建本地文件夹并拷贝序列化文件jar包.生成znode用于存放TP和task等信息,最后一步才进行任务分配.例如以下图 ...

  10. 关于 折半查找 while 条件 &lt; , &lt;=

    int bin_search(int a[],int len,int key) { int low=0; int high=len-1; while(low<=high) //若为low< ...