POJ 1887 Testingthe CATCHER (LIS:最长下降子序列)
POJ 1887Testingthe CATCHER (LIS:最长下降子序列)
http://poj.org/problem?id=3903
题意:
给你一个长度为n (n<=200000) 的数字序列, 要你求该序列中的最长(严格)下降子序列的长度.
分析:
读取全部输入, 将原始数组逆向,
然后求最长严格上升子序列就可以.
因为n的规模达到20W, 所以仅仅能用O(nlogn)的算法求.
令g[i]==x表示当前遍历到的长度为i的全部最长上升子序列中的最小序列末尾值为x.(假设到眼下为止,
根本不存在长i的上升序列,
那么x==INF无穷大)
如果当前遍历到了第j个值即a[j], 那么先找到g[n]数组的值a[j]的下确界(即第一个>=a[j]值的g[k]的k值).
那么此时表明存在长度为k-1的最长上升子序列且该序列末尾的位置<j且该序列末尾值<a[j].
那么我们能够令g[k]=a[j] 且 dp[i]=k (dp含义如解法1).
(上面一段花时间细致理解)
终于我们能够找出下标最大的i使得: g[i]<INF 中i下标最大. 这个i就是LIS的长.
AC代码: O(n*logn)复杂度
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=200000+5;
const int INF=1e8; int n;
int a[maxn];
int g[maxn]; int main()
{
int kase=0;
while(scanf("%d",&a[1])==1 && a[1]!=-1)
{
if(kase>0) printf("\n");
n=2;
while(scanf("%d",&a[n])==1 && a[n]!=-1)
{
n++;
}
n--; reverse(a+1,a+n+1);
for(int i=1;i<=n;i++)
g[i]=INF; int ans=0;
for(int i=1;i<=n;i++)
{
int k=lower_bound(g+1,g+n+1,a[i])-g;
g[k]=a[i];
ans=max(ans,k);
}
printf("Test #%d:\n maximum possible interceptions: %d\n",++kase,ans);
}
return 0;
}
POJ 1887 Testingthe CATCHER (LIS:最长下降子序列)的更多相关文章
- poj 1887 Testing the CATCHER_最长上升子序列
题意:题目太长没看,直接看输入输出猜出是最长下降子序列 用了以前的代码直接a了,做法类似贪心,把最小的顺序数存在数组里面,每次二分更新数组得出最长上升子序列 #include<iostream& ...
- POJ3903Stock Exchange&&POJ1631Bridging signals最长上升子序列 &&POJ1887Testing the CATCHER(最长下降子序列)(LIS模版题)
题目链接:http://poj.org/problem?id=3903 题目链接:http://poj.org/problem?id=1631 题目链接:http://poj.org/problem? ...
- POJ 1631 Bridging signals (LIS:最长上升子序列)
题意:给你一个长为n(n<=40000)的整数序列, 要你求出该序列的最长上升子序列LIS. 思路:要求(nlogn)解法 令g[i]==x表示当前遍历到的长度为i的所有最长上升子序列中的最小序 ...
- POJ 3903 Stock Exchange (E - LIS 最长上升子序列)
POJ 3903 Stock Exchange (E - LIS 最长上升子序列) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action ...
- POJ-1887 Testing the CATCHER(dp,最长下降子序列)
Testing the CATCHER Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 16515 Accepted: 6082 ...
- 低价购买 (动态规划,变种最长下降子序列(LIS))
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- POJ - 3903 Stock Exchange(LIS最长上升子序列问题)
E - LIS Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Descripti ...
- 【最长下降子序列的长度和个数】 poj 1952
转自http://blog.csdn.net/zhang360896270/article/details/6701589 这题要求最长下降子序列的长度和个数,我们可以增加数组maxlen[size] ...
- POJ 1836 Alignment(DP max(最长上升子序列 + 最长下降子序列))
Alignment Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14486 Accepted: 4695 Descri ...
随机推荐
- js上传文件获取文件流
上传文件获取文件流 <div> 上传文件 : <input type="file" name = "file" id = "file ...
- linux 系统相关命令
说明:此篇以 Debian ( ubuntu16.04 ) 命令为例 1. tab键默认是不能自动补全命令 apt install bash-completion // 安装完成之后重启系统 2. 虚 ...
- nginx proxy_set_header设置,自定义header
在实际应用中,我们可能需要获取用户的ip地址,比如做异地登陆的判断,或者统计ip访问次数等,通常情况下我们使用request.getRemoteAddr()就可以获取到客户端ip,但是当我们使用了ng ...
- 洛谷 P2040 打开所有的灯
P2040 打开所有的灯 题目背景 pmshz在玩一个益(ruo)智(zhi)的小游戏,目的是打开九盏灯所有的灯,这样的游戏难倒了pmshz... 题目描述 这个灯很奇(fan)怪(ren),点一下就 ...
- datatable 前台和后台数据格式
datatable是很强大的前台表格插件,前台定义好表格格式后,后台须要返回指定格式的json数据! 例如以下: 首先是js的定义: var oTable = $('#sample_editable_ ...
- IIS Express加入MIME映射
近期在用Grid Report做Web报表的时候,碰到一件非常挠头的事. 本地用VS2010写的代码,调试的时候Web报表无法显示,用24.248server上VS2013相同仍是无法显示.最后把项目 ...
- linux文件时间的查看和改动touch
1. linux文件的时间 linux下文件时间主要有以下三种: 1.1 modification time(mtime) 文件改动时间.即文件内容的改动时,更新这个时间.不包含文件权限和属性的改动. ...
- 11.怎样自学Struts2之Struts2验证[视频]
11.怎样自学Struts2之Struts2验证[视频] 之前写了一篇"打算做一个视频教程探讨怎样自学计算机相关的技术",优酷上传不了.仅仅好传到百度云上: http://pan. ...
- vs2012碰到生成时报该错误:项目中不存在目标 “XXXXXX”
vs2012碰到生成时报该错误:项目中不存在目标 "XXXXXX" 首先打开project文件,找到 以下信息: <Import Project="$(MSBuil ...
- 11_HTML5_Local_Storage本地存储
本地存储localStorage是大型cookie,cookie只有4k,