P1265 公路修建 洛谷
https://www.luogu.org/problem/show?pid=1265
题目描述
某国有n个城市,它们互相之间没有公路相通,因此交通十分不便。为解决这一“行路难”的问题,政府决定修建公路。修建公路的任务由各城市共同完成。
修建工程分若干轮完成。在每一轮中,每个城市选择一个与它最近的城市,申请修建通往该城市的公路。政府负责审批这些申请以决定是否同意修建。
政府审批的规则如下:
(1)如果两个或以上城市申请修建同一条公路,则让它们共同修建;
(2)如果三个或以上的城市申请修建的公路成环。如下图,A申请修建公路AB,B申请修建公路BC,C申请修建公路CA。则政府将否决其中最短的一条公路的修建申请;

(3)其他情况的申请一律同意。
一轮修建结束后,可能会有若干城市可以通过公路直接或间接相连。这些可以互相:连通的城市即组成“城市联盟”。在下一轮修建中,每个“城市联盟”将被看作一个城市,发挥一个城市的作用。
当所有城市被组合成一个“城市联盟”时,修建工程也就完成了。
你的任务是根据城市的分布和前面讲到的规则,计算出将要修建的公路总长度。
输入输出格式
输入格式:
第一行一个整数n,表示城市的数量。(n≤5000)
以下n行,每行两个整数x和y,表示一个城市的坐标。(-1000000≤x,y≤1000000)
输出格式:
一个实数,四舍五入保留两位小数,表示公路总长。(保证有惟一解)
输入输出样例
4
0 0
1 2
-1 2
0 4
6.47
说明
修建的公路如图所示:
很容易发现,特殊情况没什么用,唬人的~~~、
表示我无奈的一zui代码~
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath> #define N 5233
#define maxn 1e7 using namespace std; int minn,k;
bool vis[N];
int n,x[N],y[N];
double d[N],ans;
double dis[N][N]; void Prime()
{
for(int i=;i<=n;i++) d[i]=dis[][i];
d[]=;vis[]=;
for(int i=;i<n;i++)
{
minn=maxn;
for(int j=;j<=n;j++)
if(!vis[j]&&minn>d[j])
{
minn=d[j];
k=j;
}
vis[k]=;
for(int j=;j<=n;j++)
if(!vis[j]&&d[j]>dis[k][j])
d[j]=dis[k][j];
}
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
cin>>x[i]>>y[i];
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j]=sqrt(pow((x[i]-x[j]),)*1.0+pow((y[i]-y[j]),)*1.0);
Prime();
for(int i=;i<=n;i++)
ans+=d[i];
printf("%.2lf",ans);
return ;
}
80分,TLE两个(最朴素的Prime)
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath> #define N 5233
#define maxn 1e7 using namespace std; bool vis[N];
double minn;
double d[N],ans;
int n,x[N],y[N],k; double count(int i,int j)
{
return sqrt(pow((x[i]-x[j]),)*1.0+pow((y[i]-y[j]),)*1.0);
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d%d",&x[i],&y[i]); for(int i=;i<=n;i++) d[i]=count(,i);
d[]=;vis[]=;
for(int i=;i<n;i++)
{
minn=maxn;
for(int j=;j<=n;j++)
if(!vis[j]&&minn>d[j])
{
minn=d[j];
k=j;
}
vis[k]=;ans+=minn;
for(int j=;j<=n;j++)
{
double cnt=count(k,j);
if(!vis[j]&&d[j]>cnt)
d[j]=cnt;
} } printf("%.2lf",ans);
return ;
}
80分,TLE两个(不用二维数组存图)
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath> #define N 5233
#define maxn 1e7 using namespace std; int minn,k;
bool vis[N];
int n,x[N],y[N];
double d[N],ans; double count(int i,int j)
{
return sqrt(pow((x[i]-x[j]),)*1.0+pow((y[i]-y[j]),)*1.0);
} void Prime()
{
for(int i=;i<=n;i++) d[i]=count(,i);
d[]=;vis[]=;
for(int i=;i<n;i++)
{
minn=maxn;
for(int j=;j<=n;j++)
if(!vis[j]&&minn>d[j])
{
minn=d[j];
k=j;
}
vis[k]=;
for(int j=;j<=n;j++)
{
double cnt=count(k,j);
if(!vis[j]&&d[j]>cnt)
d[j]=cnt;
} }
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
cin>>x[i]>>y[i];
Prime();
for(int i=;i<=n;i++)
ans+=d[i];
printf("%.2lf",ans);
return ;
}
90分,TLE一个(小优化)
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath> #define N 5233
#define maxn 1e7 using namespace std; bool vis[N];
double minn,cnt;
double d[N],ans;
int n,x[N],y[N],k; double count(int i,int j)
{
return sqrt((double)(x[i]-x[j])*(x[i]-x[j])+(double)(y[i]-y[j])*(y[i]-y[j]));
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d%d",&x[i],&y[i]); for(int i=;i<=n;i++) d[i]=count(,i);
d[]=;vis[]=;
for(int i=;i<n;i++)
{
minn=maxn;
for(int j=;j<=n;j++)
if(!vis[j]&&minn>d[j])
{
minn=d[j];
k=j;
}
vis[k]=;ans+=minn;
for(int j=;j<=n;j++)
{
cnt=count(k,j);
if(!vis[j]&&d[j]>cnt)
d[j]=cnt;
} } printf("%.2lf",ans);
return ;
}
稀里哗啦改了一通~~~AC
恶心~~~
P1265 公路修建 洛谷的更多相关文章
- 洛谷P1265 公路修建
P1265 公路修建 177通过 600提交 题目提供者该用户不存在 标签图论 难度普及+/提高 提交该题 讨论 题解 记录 最新讨论 long long类型赋值-1为什么… p党80的进 为什么不过 ...
- 洛谷——P1265 公路修建
P1265 公路修建 题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完成.在每一 ...
- 洛谷P1265 公路修建(Prim)
To 洛谷.1265 公路修建 题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完 ...
- 洛谷P1265 公路修建题解
题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完成.在每一轮中,每个城市选择一个 ...
- 洛谷P1265 公路修建——prim
给一手链接 https://www.luogu.com.cn/problem/P1265 这道题本质上就是最小生成树,题目描述就是prim的思想 TIP:注意稠密图和稀疏图的区别 #include&l ...
- 洛谷 [P1265] 公路修建
本题的描述:城市联盟,最短距离.. 使人想到了prim求MST,再一看数据范围:完全图!,那么一定得用prim,因为只有5000个点,所以不加优化的prim就能过. #include <iost ...
- P1265 公路修建 最小生成树
题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一“行路难”的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完成.在每一轮中,每个城市选择一个 ...
- P1265 公路修建 (prim)
题目描述 某国有n个城市,它们互相之间没有公路相通,因此交通十分不便.为解决这一"行路难"的问题,政府决定修建公路.修建公路的任务由各城市共同完成. 修建工程分若干轮完成.在每一轮 ...
- TYVJ P1015 公路乘车 &&洛谷 P1192 台阶问题 Label:dp
题目描述 有N级的台阶,你一开始在底部,每次可以向上迈最多K级台阶(最少1级),问到达第N级台阶有多少种不同方式. 输入输出格式 输入格式: 输入文件的仅包含两个正整数N,K. 输出格式: 输入文件s ...
随机推荐
- A. Power Consumption Calculation
http://codeforces.com/problemset/problem/10/A 题很简单,就是题意难懂啊... #include <stdio.h> #include < ...
- SS配置,Brook是什么?,Brook如何配置(Android篇)
很长时间没有更新了,今天给大家分享一下什么是Brook,和SS有什么区别?写的不好,请勿见外,大佬绕过. Brook简单介绍 Brook 是一个高效的 Socks5 代理软件,官方支持Windows. ...
- [转]android使用全局变量的两种方法
本文转自:http://blog.csdn.net/feiyangxiaomi/article/details/9966215 在我们使用android编写程序的时候,少不了想利用全局变量,但是面向对 ...
- 关于GIT使用过程中遇到的问题
npm构建,将所需要安装的依赖添加至package.json文件中,使用cnpm i进行安装 #拉去指定项目的默认分支: git pull http://username:password@gitla ...
- 元素属性的添加删除(原生js)
添加属性 odiv.setAttribute("title","hello div!"); odiv.setAttribute("class" ...
- TextOut与DrawText的区别
BOOL TextOut( HDC hdc, // 句柄 int nXStart, // 字符串的开始位置 x坐标 int nYStart, // 字符串的开始位置 y坐标 LPCTSTR lpStr ...
- python自动化测试框架(一)
1.开发环境 名称 版本 系统 windows 7 python版本 2.7.14 IDE pycharm2017 2.大致框架流程 :展示了框架实现的业务流程 3.框架介绍 3.1 ======完善 ...
- SQL基本操作——存储过程
存储过程类似于C#中的方法. --创建存储过程 create proc usp_TwoNumberAdd @num1 int, @num2 int as begin select @num1+@num ...
- transactoin
hibernate对数据的操作是封装在事务当中,并且默认是非自动提交方式.所以用session保存对象时,如果不开启事务,并且手工提交事务,对象并不会真正保存在数据库中.
- 最新 Xilinx vivado IP许可申请
xilinx的fpga使用vivado开发,zynq系列fpga的SOC开发成为主流,加快fpga开发,也进一步提高了fpga开发的灵活性. xilinx提供很多ip核供开发者直接使用,开发快捷方便, ...