[luogu2607 ZJOI2008] 骑士 (树形dp)
题目描述
Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英。他们劫富济贫,惩恶扬善,受到社会各界的赞扬。
最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争。战火绵延五百里,在和平环境中安逸了数百年的Z国又怎能抵挡的住Y国的军队。于是人们把所有的希望都寄托在了骑士团的身上,就像期待有一个真龙天子的降生,带领正义打败邪恶。
骑士团是肯定具有打败邪恶势力的能力的,但是骑士们互相之间往往有一些矛盾。每个骑士都有且仅有一个自己最厌恶的骑士(当然不是他自己),他是绝对不会与自己最厌恶的人一同出征的。
战火绵延,人民生灵涂炭,组织起一个骑士军团加入战斗刻不容缓!国王交给了你一个艰巨的任务,从所有的骑士中选出一个骑士军团,使得军团内没有矛盾的两人(不存在一个骑士与他最痛恨的人一同被选入骑士军团的情况),并且,使得这支骑士军团最具有战斗力。
为了描述战斗力,我们将骑士按照1至N编号,给每名骑士一个战斗力的估计,一个军团的战斗力为所有骑士的战斗力总和。
输入输出格式
输入格式:
输入文件knight.in第一行包含一个正整数N,描述骑士团的人数。
接下来N行,每行两个正整数,按顺序描述每一名骑士的战斗力和他最痛恨的骑士。
输出格式:
输出文件knight.out应包含一行,包含一个整数,表示你所选出的骑士军团的战斗力。
输入输出样例
输入样例#1:
3
10 2
20 3
30 1
输出样例#1:
30
说明
对于30%的测试数据,满足N ≤ 10;
对于60%的测试数据,满足N ≤ 100;
对于80%的测试数据,满足N ≤ 10 000。
对于100%的测试数据,满足N ≤ 1 000 000,每名骑士的战斗力都是不大于 1 000 000的正整数。
做法
“我厌恶的人的厌恶的人不是我厌恶的人”
所以这个题与舞会很像不过会有环(无自环)
对于环如何处理呢?
我们在环上随意选取两个点 由题意可知他们是不能同时出现的 并且题中权值为点权
那我们只需放弃这条边然后各自跑一个舞会即可
code:
//By Menteur_Hxy
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <map>
#include <set>
#include <cmath>
#include <vector>
#include <queue>
#define M(a,b) memset(a,(b),sizeof(a))
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
#define LL long long
using namespace std;
inline LL rd() {
LL x=0,fla=1; char c=' ';
while(c>'9'|| c<'0') {if(c=='-') fla=-fla; c=getchar();}
while(c<='9' && c>='0') x=x*10+c-'0',c=getchar();
return x*fla;
}
inline void out(LL x){
int a[25],wei=0;
if(x<0) putchar('-'),x=-x;
for(;x;x/=10) a[++wei]=x%10;
if(wei==0){ puts("0"); return;}
for(int j=wei;j>=1;--j) putchar('0'+a[j]);
putchar('\n');
}
const int N=1000010;
const int INF=0x3f3f3f3f;
int n,m,cnt;
int head[N],fa[N],v[N],ra[N],rb[N];
int to[N<<1],nex[N<<1];
LL f[N],g[N];
struct edges{
int nex,to,dis;
}e[N];
int get(int x) {
return fa[x]==x?x:fa[x]=get(fa[x]);
}
void add(int a,int b) {
nex[++cnt]=head[a];
to[cnt]=b;
head[a]=cnt;
}
void dfs(int x,int pre) {
f[x]=v[x],g[x]=0;
for(int i=head[x];i;i=nex[i]) {
if(to[i]==pre) continue;
dfs(to[i],x);
g[x]+=max(f[to[i]],g[to[i]]);
f[x]+=g[to[i]];
}
}
int main() {
n=rd();
F(i,1,n) fa[i]=i;
F(i,1,n) {
v[i]=rd(); int b=rd();
if(get(i)!=get(b)) {
add(i,b),add(b,i);
fa[fa[i]]=fa[b];
}
else ra[++m]=i,rb[m]=b;
}
LL ans=0;
F(i,1,m) { LL tp;
dfs(ra[i],0),tp=g[ra[i]];
dfs(rb[i],0),tp=max(tp,g[rb[i]]);
ans+=tp;
}
out(ans);
return 0;
}
[luogu2607 ZJOI2008] 骑士 (树形dp)的更多相关文章
- 【BZOJ1040】[ZJOI2008]骑士 树形DP
[BZOJ1040][ZJOI2008]骑士 Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情 ...
- bzoj 1040: [ZJOI2008]骑士 树形dp
题目链接 1040: [ZJOI2008]骑士 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3054 Solved: 1162[Submit][S ...
- 洛谷P2607 [ZJOI2008]骑士(树形dp)
题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬. 最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里, ...
- 洛谷 P2607 [ZJOI2008]骑士 树形DP
题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各 界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里, ...
- [BZOJ1040][ZJOI2008]骑士(树形DP)
对于一个联通块内,有且只有一个环,即n个点n条边 那么找到那个环,然后任意断一条边,这个联通块就变成一棵树了,然后做树形DP就行了 对于断的边要记录下来DP时特判 Code #include < ...
- 【bzoj1040】骑士[ZJOI2008](树形dp)
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1040 这道题,很明显根据仇恨关系构造出的图形是一堆环套树.如果是普通的树,就可以马上裸树 ...
- 【BZOJ-1040】骑士 树形DP + 环套树 + DFS
1040: [ZJOI2008]骑士 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3312 Solved: 1269[Submit][Status ...
- luogu P2607 [ZJOI2008]骑士 tarjan dp
LINK:骑士 本来是不打算写的 发现这道题在tarjan的时候有一个坑点 所以写出来记录一下. 可以发现图可能是不连通的 且一个连通块中是一个奇环树. 做法:类似tarjan找割点 然后把环给拉出来 ...
- BZOJ 1040 ZJOI 2008 骑士 树形DP
题意: 有一些战士,他们有战斗力和讨厌的人,选择一些战士,使他们互不讨厌,且战斗力最大,范围1e6 分析: 把战士看作点,讨厌的关系看作一条边,连出来的是一个基环树森林. 对于一棵基环树,我们找出环, ...
随机推荐
- 原生node写一个静态资源服务器
myanywhere 用原生node做一个简易阉割版的anywhere静态资源服务器,以提升对node与http的理解. 相关知识 es6及es7语法 http的相关网络知识 响应头 缓存相关 压缩相 ...
- C#封装成DLL,并在C#中调用
一.C#封装成DLL 1.在VS中创建项目选择类库,命名 myDll 2.建立好项目后自动生成的代码如下: 代码修改如下,添加自己要封装的C#代码,注意修饰符必须为public using Syste ...
- 00070_Calendar
1.Calendar类概念 (1)Calendar是日历类,在Date后出现,替换掉了许多Date的方法.该类将所有可能用到的时间信息封装为静态成员变量,方便获取: (2)Calendar为抽象类,由 ...
- BA-通讯总线-百通1419a和9841
百通1419A线缆的简单介绍: Belden1419A- Belden电缆线1419A 多股导体—低容计算机电缆 FOR EIA RS-232/422 Belden 1419A是24 AWG(7*32 ...
- NOIP2012 同余方程 题解
描写叙述 求关于x的同余方程ax ≡ 1 (mod b)的最小正整数解. 格式 输入格式 输入仅仅有一行,包括两个正整数a, b,用一个空格隔开. 输出格式 输出仅仅有一行,包括一个正整数x0.即最小 ...
- HDU 5078 Revenge of LIS II(dp LIS)
Problem Description In computer science, the longest increasing subsequence problem is to find a sub ...
- HDU 2874 LCA离线算法 tarjan算法
给出N个点,M条边.Q次询问 Q次询问每两点之间的最短距离 典型LCA 问题 Marjan算法解 #include "stdio.h" #include "strin ...
- [iOS翻译]《iOS7 by Tutorials》在Xcode 5里使用单元測试(上)
简单介绍: 单元測试是软件开发的一个重要方面.毕竟,单元測试能够帮你找到bug和崩溃原因,而程序崩溃是Apple在审查时拒绝app上架的首要原因. 单元測试不是万能的,但Apple把它作为开发工具包的 ...
- POJ3249 Test for Job(拓扑排序+dp)
Test for Job Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 10137 Accepted: 2348 Des ...
- 错误 'Cannot run program "/home/uv/IDE/adt/sdk/platform-tools/adb": error=2, No such file or directory
转 Linux下Android SDK中adb找不到的解决方案 2013年04月22日 20:41:48 阅读数:7621 在Linux平台下配置Android SDK开发环境过程中,Eclipse会 ...