主成分分析和探索性因子分析是用来探索和简化多变量复杂关系的常用方法,能解决信息过度复杂的多变量数据问题。

主成分分析PCA:一种数据降维技巧,将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分

探索性因子分析EFA:用来发现一组变量的潜在结构的方法,通过寻找一组更小的,潜在的隐藏的结构来揭示已观测到的,显式的变量间的关系.

R基础安装包中提供了PCA和EFA函数分别为princoomp()和factanal(), psych包中也提供了相关函数,它提供了比基础函数更加丰富和有用的选项.

主成分分析:

判断主成分的个数:1) 先验知识, 2) 解释变量方差的积累值的阈值来判断需要的主成分数,3) 检查变量间k*k 相关系数矩阵来判断保留的主成分数

principal(r, nfactors=, rotate=, score = )

r是相关系数矩阵或者原始数据矩阵

nfactors 设定主成分数

rotate 指定旋转的方法(默认,最大方差旋转)

scores 设定是否需要计算主成分得分(默认不需要)

library(psych)
#这个例子只有一个主成分
#删除CONT变量(下标-1),生成三种评价指标
fa.parallel(USJudgeRatings[,-1],fa='pc',n.iter=100,show.legend = FALSE)
#图中表明选择一个主成分便可,之后使用principal()函数挑出相应的主成分
pc <- principal(USJudgeRatings[,-1],nfactors = 1,scores=TRUE)
pc
#从原始数据中获得成分得分
pc$scores
#这个例子有2个主成分
fa.parallel(Harman23.cor$cov,n.obs=302,fa='pc',n.iter=100,show.legend = FALSE)
rc <- principal(Harman23.cor$cov,nfactors=2,rotate="varimax",scores=TRUE)
rc
#主成分分析基于相关系数矩阵时,原始数据不可用
round(unclass(rc$weights),2)
attach(Harman23.cor)
#利用以下公式
#PC1 = 0.28*cov$height + 0.30*arm.span + 0.30*foream + 0.29*lower.leg - 0.0
#6*weight - 0.08*bitro.diameter - 0.10*chest.girth-0.04*chest.width

探索性因子分析:

EFA目标是通过发掘隐藏在数据下的一组较少的,更为基本的无法观测的变量来揭示一组可观测变量的相关性。这些虚拟的,无法观测的变量称为因子。

library(psych)
options(digits=2)
#数据集ability.cov提供变量的协方差矩阵
covariances<-ability.cov$cov
#用cov2cor将其转化为相关系数矩阵
correlations<-cov2cor(covariances)
correlations
#判断要提取的引子数
fa.parallel(correlations,n.obs = 112,fa="both",n.iter=100)
#用fa函数获取相应的结果
fa<-fa(correlations, nfactors=2,rotate="none",fm='pa')
fa

[读书笔记] R语言实战 (十四) 主成分和因子分析的更多相关文章

  1. [读书笔记] R语言实战 (四) 基本数据管理

    1. 创建新的变量 mydata<-data.frame(x1=c(2,2,6,4),x2=c(3,4,2,8)) #方法一 mydata$sumx<-mydata$x1+mydata$x ...

  2. [读书笔记] R语言实战 (一) R语言介绍

    典型数据分析的步骤: R语言:为统计计算和绘图而生的语言和环境 数据分析:统计学,机器学习 R的使用 1. 区分大小写的解释型语言 2. R语句赋值:<- 3. R注释: # 4. 创建向量 c ...

  3. [读书笔记] R语言实战 (六) 基本图形方法

    1.  条形图 barplot() #载入vcd包 library(vcd) #table函数提取各个维度计数 counts <- table(Arthritis$Improved) count ...

  4. [读书笔记] R语言实战 (二) 创建数据集

    R中的数据结构:标量,向量,数组,数据框,列表 1. 向量:储存数值型,字符型,或者逻辑型数据的一维数组,用c()创建 **  R中没有标量,标量以单元素向量的形式出现 2. 矩阵:二维数组,和向量一 ...

  5. [读书笔记] R语言实战 (三) 图形初阶

    创建图形,保存图形,修改特征:标题,坐标轴,标签,颜色,线条,符号,文本标注. 1. 一个简单的例子 #输出到图形到pdf文件 pdf("mygrapg.pdf") attach( ...

  6. [读书笔记] R语言实战 (十三) 广义线性模型

    广义线性模型扩展了线性模型的框架,它包含了非正态的因变量分析 广义线性模型拟合形式: $$g(\mu_\lambda) = \beta_0 + \sum_{j=1}^m\beta_jX_j$$ $g( ...

  7. [读书笔记] R语言实战 (五) 高级数据管理

    1. 数值函数 1) 数学函数 2) 统计函数 3. 数据标准化 scale() 函数对矩阵或者数据框的指定列进行均值为0,标准化为1的标准化 mydata <- data.frame(c1=c ...

  8. R语言实战(四)回归

    本文对应<R语言实战>第8章:回归 回归是一个广义的概念,通指那些用一个或多个预测变量(也称自变量或解释变量)来预测响应变量(也称因变量.效标变量或结果变量)的方法.通常,回归分析可以用来 ...

  9. R语言实战(四)—— 基本数据管理

    一.基础操作 1.根据数据信息,创建数据框 > manager <- c(1,2,3,4,5) > date <- c("10/24/08","1 ...

随机推荐

  1. 终极对决!Dubbo 和 Spring Cloud 微服务架构到底孰优孰劣

    标签: 微服务dubbospring架构 前言 微服务架构是互联网很热门的话题,是互联网技术发展的必然结果.它提倡将单一应用程序划分成一组小的服务,服务之间互相协调.互相配合,为用户提供最终价值.虽然 ...

  2. mysql 插入更新在一条sql ON DUPLICATE KEY UPDATE

    有时候需要进行数据操作的,如果有数据则更新数据, 没有数据则插入. 以往的做法是先查询,再根据查询结果进行判断,执行插入或更新操作 其实 有一种 ON DUPLICATE KEY UPDATE 语法, ...

  3. [SharePoint][SharePoint Designer 入门经典]Chapter10 Web部件链接

    本章概要: 1.Web部件作用 2.如何添加和配置 3.如何个性化 4.如何导出,并在其他站点重利用 5.通过组合web part创建复杂的用户界面

  4. JavaScript之this释疑

    近期进修JavaScript,看了"You Don't Know JS"这本书,认为是本JavaScript内功上乘心法,有一定JavaScript基础朋友一定要看看(不推荐入门小 ...

  5. 【云快讯】之四十八《IBM和Cisco最新收购,加强Openstack易用能力》

    2015-06-08 张晓东 东方云洞察 点击上面的链接文字,能够高速关注"东方云洞察"公众号 本周宣布的两起收购引人注意.思科购买Piston云计算公司.同期IBM的收购Blue ...

  6. winform显示系统托盘,双击图片图表显示窗体,退出窗体是否提示

    private void Form1_FormClosing(object sender, FormClosingEventArgs e) { DialogResult result = Messag ...

  7. RecyclerView的点击事件

    RecyclerView 一.简单介绍 这个是谷歌官方出的控件.使我们能够很easy的做出列表装的一个控件,当然recyclerview的功能不止这些,它还能够做出瀑布流的效果,这是一个很强大的控件, ...

  8. ym—— Android网络框架Volley(终极篇)

    转载请注明本文出自Cym的博客(http://blog.csdn.net/cym492224103).谢谢支持! 没看使用过Volley的同学能够,先看看Android网络框架Volley(体验篇)和 ...

  9. python之--初始面向对象

    阅读目录 楔子 面向过程vs面向对象 初识面向对象 类的相关知识 对象的相关知识 对象之间的交互 类命名空间与对象.实例的命名空间 类的组合用法 初识面向对象小结 面向对象的三大特性 继承 多态 封装 ...

  10. 多元一次方程解法 C++

    #include<iostream> #include<math.h> #include<fstream> #include<stdlib.h> usi ...