time limit per test2 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

Ayrat has number n, represented as it’s prime factorization pi of size m, i.e. n = p1·p2·…·pm. Ayrat got secret information that that the product of all divisors of n taken modulo 109 + 7 is the password to the secret data base. Now he wants to calculate this value.

Input

The first line of the input contains a single integer m (1 ≤ m ≤ 200 000) — the number of primes in factorization of n.

The second line contains m primes numbers pi (2 ≤ pi ≤ 200 000).

Output

Print one integer — the product of all divisors of n modulo 109 + 7.

Examples

input

2

2 3

output

36

input

3

2 3 2

output

1728

Note

In the first sample n = 2·3 = 6. The divisors of 6 are 1, 2, 3 and 6, their product is equal to 1·2·3·6 = 36.

In the second sample 2·3·2 = 12. The divisors of 12 are 1, 2, 3, 4, 6 and 12. 1·2·3·4·6·12 = 1728.

【题解】



数论问题;先搞出质数的总数a[0];存在a[1..a[0]]中;

用cnt[x]表示x这个数字的数目;

用l[n]表示∏(cnt[a[i]]+1);i=1..n

用r[n]表示∏(cnt[a[i]]+1);i=n..a[0];

则枚举每个数字a[i];

对于1..i-1和i+1..a[0]这些数字;

它们的组合有l[i-1]*r[i+1]个;

a[i]要参与到这些组合中;

那么最后会乘进去多少个a[i]呢;

显然a[i]^x就会乘进去x个a[i];



(a[i]^1)^(l[i-1]*1*r[i+1])

(a[i]^2)^(l[i-1]*2*r[i+1])

(a[i]^3)^(l[i-1]*3*r[i+1])



(a[i]^cnt[a[i]])^(l[i-1]*cnt[a[i]]*r[i+1])

最后会全部乘起来;

即a[i]^(l[i-1]r[i+1](1+2+3..+cnt[a[i]]))

即a[i]^(l[i-1]r[i+1]*cnt[a[i]](cnt[a[i]]+1)/2);

这个数字的指数是很恐怖的;

a[i]^(l[i-1]r[i+1]*cnt[a[i]](cnt[a[i]]+1)/2)

需要用费马小定理搞一搞;

下面是证明;

最上面那行是费马小定理;



这个费马小定理要求p和a是互质的;

而P是1e9+7是质数

a[i]最大20W小于P显然a[i]和p互质;则

a[i]^(l[i-1]r[i+1]*cnt[a[i]](cnt[a[i]]+1)/2) % p==a[i]^(l[i-1]r[i+1]*cnt[a[i]](cnt[a[i]]+1)/2%(p-1)) % p;

然后快速幂搞下就好;

#include <cstdio>
#include <cmath>
#include <set>
#include <map>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
#include <vector>
#include <stack>
#include <string>
#define lson L,m,rt<<1
#define rson m+1,R,rt<<1|1
#define LL long long using namespace std; const int MAXN = 2e5;
const int MOD = 1e9+7;
const int dx[5] = {0,1,-1,0,0};
const int dy[5] = {0,0,0,-1,1};
const double pi = acos(-1.0); LL ans = 1,l[MAXN+100],r[MAXN+100],cnt[MAXN+100];
int m;
LL a[MAXN+100] = {0};
vector <LL> pre[MAXN]; void input_LL(LL &r)
{
r = 0;
char t = getchar();
while (!isdigit(t) && t!='-') t = getchar();
LL sign = 1;
if (t == '-')sign = -1;
while (!isdigit(t)) t = getchar();
while (isdigit(t)) r = r * 10 + t - '0', t = getchar();
r = r*sign;
} void input_int(int &r)
{
r = 0;
char t = getchar();
while (!isdigit(t)&&t!='-') t = getchar();
int sign = 1;
if (t == '-')sign = -1;
while (!isdigit(t)) t = getchar();
while (isdigit(t)) r = r * 10 + t - '0', t = getchar();
r = r*sign;
} LL ksm(LL a,LL x)
{
if (x==0)
return 1;
LL temp = ksm(a,x>>1);
temp = (temp*temp)%MOD;
if (x&1)
temp = (temp*a)%MOD;
return temp;
} int main()
{
input_int(m);
for (int i = 1;i <= m;i++)
{
int x;
input_int(x);
cnt[x]++;
}
for (int i = 2;i <= MAXN;i++)
if (cnt[i])
a[++a[0]] = i;
l[0] = 1;r[a[0]+1] = 1;
for (int i = 1;i<=a[0];i++)
l[i] = (l[i-1]*(cnt[a[i]]+1))%(MOD-1);
for (int i = a[0];i>=1;i--)
r[i] = (r[i+1]*(cnt[a[i]]+1))%(MOD-1);
for (int i = 1;i <= a[0];i++)
{
LL temp1 = ((cnt[a[i]]*(cnt[a[i]]+1))/2)%(MOD-1);
LL temp2 = (l[i-1]*r[i+1])%(MOD-1);
LL temp = ksm(a[i],(temp1*temp2)%(MOD-1));
ans = (ans * temp)%MOD;
}
printf("%I64d\n",ans);
return 0;
}

【14.67%】【codeforces 615D】Multipliers的更多相关文章

  1. 【 BowWow and the Timetable CodeForces - 1204A 】【思维】

    题目链接 可以发现 十进制4 对应 二进制100 十进制16 对应 二进制10000 十进制64 对应 二进制1000000 可以发现每多两个零,4的次幂就增加1. 用string读入题目给定的二进制 ...

  2. 【24.67%】【codeforces 551C】 GukiZ hates Boxes

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  3. 【26.67%】【codeforces 596C】Wilbur and Points

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  4. 【中途相遇法】【STL】BAPC2014 K Key to Knowledge (Codeforces GYM 100526)

    题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show& ...

  5. 【codeforces 67A】Partial Teacher

    [题目链接]:http://codeforces.com/problemset/problem/67/A [题意] 给一个长度为n-1的字符串; 每个字符串是'L','R','='这3种字符中的一个; ...

  6. 【77.78%】【codeforces 625C】K-special Tables

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  7. 【codeforces 754D】Fedor and coupons

    time limit per test4 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  8. 【codeforces 760A】Petr and a calendar

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  9. 【codeforces 750E】New Year and Old Subsequence

    time limit per test3 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

随机推荐

  1. asp.net--TextBox属性全研究

    . .aspx代码例如以下: <%@ Page Language="C#" AutoEventWireup="true" CodeFile="T ...

  2. 微信支付v2开发(4) 交易通知

    本文介绍如何使用JS API支付时如何获得交易通知. 一.交易通知 用户在成功完成支付后,微信后台通知(POST)商户服务器(notify_url)支付结果.商户可以使用notify_url的通知结果 ...

  3. JS面向对象程序设计(OOP:Object Oriented Programming)

    你是如何理解编程语言中的面向对象的? 我们研究JS和使用JS编程本身就是基于面向对象的思想来开发的,JS中的一切内容都可以统称为要研究的“对象”,我们按照功能特点把所有内容划分成“几个大类,还可以基于 ...

  4. java.util.ConcurrentModificationException(如何避免ConcurrentModificationException)

    java.util.ConcurrentModificationException is a very common exception when working with java collecti ...

  5. vue中的select框的值动态绑定

    <--这两种写法效果一样--> 1: <select v-model="wxStatus"> <option label="已添加" ...

  6. 【Codeforces Round #437 (Div. 2) B】Save the problem!

    [链接]h在这里写链接 [题意]     给你一个金额N,和硬币的类型总数M;     (完全背包),然后问你组成N的方案数.     使得,用这些硬币组成价值为N的金额的方案数为A;     现在A ...

  7. The behavior of App killed or restored by Android System or by users

    What's the behavior of App killed or restored by Android System or by users? First, user kills the a ...

  8. 嵌入式arm linux环境中gdb+gdbserver调试

    一.前言嵌入式Linux系统中,应用开发过程中,很多情况下,用户需要对一个应用程序进行反复调试,特别是复杂的程序.采用GDB方法调试,由于嵌入式系统资源有限性,一般不能直接在目标系统上进行调试,通常采 ...

  9. ArcGIS 中要素的查询与修改

    转自nimeila的回答 求C# ArcGIS Engine修改选中要素的属性,单要素都行 RLAlterFrm RLalter = new RLAlterFrm(); RLalter.ShowDia ...

  10. AE开发概念辨析

    樱木 原文 AE开发之概念辨析2,AE开发涉及相关概念,AE开发相关概念 1 AE中的类库 AE总共包括了21个子库,分别是SYSTEM,SYSTEMUI,GEOMETRY,DISPLAY,SERVE ...