time limit per test2 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

Ayrat has number n, represented as it’s prime factorization pi of size m, i.e. n = p1·p2·…·pm. Ayrat got secret information that that the product of all divisors of n taken modulo 109 + 7 is the password to the secret data base. Now he wants to calculate this value.

Input

The first line of the input contains a single integer m (1 ≤ m ≤ 200 000) — the number of primes in factorization of n.

The second line contains m primes numbers pi (2 ≤ pi ≤ 200 000).

Output

Print one integer — the product of all divisors of n modulo 109 + 7.

Examples

input

2

2 3

output

36

input

3

2 3 2

output

1728

Note

In the first sample n = 2·3 = 6. The divisors of 6 are 1, 2, 3 and 6, their product is equal to 1·2·3·6 = 36.

In the second sample 2·3·2 = 12. The divisors of 12 are 1, 2, 3, 4, 6 and 12. 1·2·3·4·6·12 = 1728.

【题解】



数论问题;先搞出质数的总数a[0];存在a[1..a[0]]中;

用cnt[x]表示x这个数字的数目;

用l[n]表示∏(cnt[a[i]]+1);i=1..n

用r[n]表示∏(cnt[a[i]]+1);i=n..a[0];

则枚举每个数字a[i];

对于1..i-1和i+1..a[0]这些数字;

它们的组合有l[i-1]*r[i+1]个;

a[i]要参与到这些组合中;

那么最后会乘进去多少个a[i]呢;

显然a[i]^x就会乘进去x个a[i];



(a[i]^1)^(l[i-1]*1*r[i+1])

(a[i]^2)^(l[i-1]*2*r[i+1])

(a[i]^3)^(l[i-1]*3*r[i+1])



(a[i]^cnt[a[i]])^(l[i-1]*cnt[a[i]]*r[i+1])

最后会全部乘起来;

即a[i]^(l[i-1]r[i+1](1+2+3..+cnt[a[i]]))

即a[i]^(l[i-1]r[i+1]*cnt[a[i]](cnt[a[i]]+1)/2);

这个数字的指数是很恐怖的;

a[i]^(l[i-1]r[i+1]*cnt[a[i]](cnt[a[i]]+1)/2)

需要用费马小定理搞一搞;

下面是证明;

最上面那行是费马小定理;



这个费马小定理要求p和a是互质的;

而P是1e9+7是质数

a[i]最大20W小于P显然a[i]和p互质;则

a[i]^(l[i-1]r[i+1]*cnt[a[i]](cnt[a[i]]+1)/2) % p==a[i]^(l[i-1]r[i+1]*cnt[a[i]](cnt[a[i]]+1)/2%(p-1)) % p;

然后快速幂搞下就好;

#include <cstdio>
#include <cmath>
#include <set>
#include <map>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
#include <vector>
#include <stack>
#include <string>
#define lson L,m,rt<<1
#define rson m+1,R,rt<<1|1
#define LL long long using namespace std; const int MAXN = 2e5;
const int MOD = 1e9+7;
const int dx[5] = {0,1,-1,0,0};
const int dy[5] = {0,0,0,-1,1};
const double pi = acos(-1.0); LL ans = 1,l[MAXN+100],r[MAXN+100],cnt[MAXN+100];
int m;
LL a[MAXN+100] = {0};
vector <LL> pre[MAXN]; void input_LL(LL &r)
{
r = 0;
char t = getchar();
while (!isdigit(t) && t!='-') t = getchar();
LL sign = 1;
if (t == '-')sign = -1;
while (!isdigit(t)) t = getchar();
while (isdigit(t)) r = r * 10 + t - '0', t = getchar();
r = r*sign;
} void input_int(int &r)
{
r = 0;
char t = getchar();
while (!isdigit(t)&&t!='-') t = getchar();
int sign = 1;
if (t == '-')sign = -1;
while (!isdigit(t)) t = getchar();
while (isdigit(t)) r = r * 10 + t - '0', t = getchar();
r = r*sign;
} LL ksm(LL a,LL x)
{
if (x==0)
return 1;
LL temp = ksm(a,x>>1);
temp = (temp*temp)%MOD;
if (x&1)
temp = (temp*a)%MOD;
return temp;
} int main()
{
input_int(m);
for (int i = 1;i <= m;i++)
{
int x;
input_int(x);
cnt[x]++;
}
for (int i = 2;i <= MAXN;i++)
if (cnt[i])
a[++a[0]] = i;
l[0] = 1;r[a[0]+1] = 1;
for (int i = 1;i<=a[0];i++)
l[i] = (l[i-1]*(cnt[a[i]]+1))%(MOD-1);
for (int i = a[0];i>=1;i--)
r[i] = (r[i+1]*(cnt[a[i]]+1))%(MOD-1);
for (int i = 1;i <= a[0];i++)
{
LL temp1 = ((cnt[a[i]]*(cnt[a[i]]+1))/2)%(MOD-1);
LL temp2 = (l[i-1]*r[i+1])%(MOD-1);
LL temp = ksm(a[i],(temp1*temp2)%(MOD-1));
ans = (ans * temp)%MOD;
}
printf("%I64d\n",ans);
return 0;
}

【14.67%】【codeforces 615D】Multipliers的更多相关文章

  1. 【 BowWow and the Timetable CodeForces - 1204A 】【思维】

    题目链接 可以发现 十进制4 对应 二进制100 十进制16 对应 二进制10000 十进制64 对应 二进制1000000 可以发现每多两个零,4的次幂就增加1. 用string读入题目给定的二进制 ...

  2. 【24.67%】【codeforces 551C】 GukiZ hates Boxes

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  3. 【26.67%】【codeforces 596C】Wilbur and Points

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  4. 【中途相遇法】【STL】BAPC2014 K Key to Knowledge (Codeforces GYM 100526)

    题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show& ...

  5. 【codeforces 67A】Partial Teacher

    [题目链接]:http://codeforces.com/problemset/problem/67/A [题意] 给一个长度为n-1的字符串; 每个字符串是'L','R','='这3种字符中的一个; ...

  6. 【77.78%】【codeforces 625C】K-special Tables

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  7. 【codeforces 754D】Fedor and coupons

    time limit per test4 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  8. 【codeforces 760A】Petr and a calendar

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  9. 【codeforces 750E】New Year and Old Subsequence

    time limit per test3 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

随机推荐

  1. [Ramda] Simple log function for debugging Compose function / Using R.tap for logging

    const log = function(x){ console.log(x); return x; } const get = R.curry(function(prop, obj){ return ...

  2. 【iOS开发系列】颜色渐变

    记录: //Transparent Gradient Layer - (void) insertTransparentGradient { UIColor *colorOne = [UIColor c ...

  3. iOS ERROR: unable to get the receiver data from the DB 解决方式

    这个错误通常发生在iOS7其中,可能是缓存的导致的问题. 解决步骤: 右击Finder,选择 Go to Folder 复制上:"~/Library/Application Support/ ...

  4. net基础题

    1. 简述 private. protected. public. internal 修饰符的访问权限. 答 . private :   私有成员, 在类的内部才可以访问. protected : 保 ...

  5. WGS84与WGS84 Web Mercator

    1. WGS84与WGS84 Web Mercator 1.1 关于WGS1984投影坐标系 UTM (Universal Transverse Mercator)坐标系是由美国军方在1947提出的. ...

  6. C语言深度剖析-----内存管理的艺术

    动态内存分配 为什么使用动态内存分配 例:记录卖出的商品 卖出商品最多只能记录1000个 两种改进的方法 都需要动态内存分配 第二种方法需要重置内存 calloc和realloc realloc重置内 ...

  7. P2P平台公司的9种职位

     1.技术   开发类:开发系统,实现新功能   维护类:服务器和网站维护   更多:Web前端等      观点:技术岗位很关键,但是很多不懂技术的老板,不会认可你的价值.   太多的老板,以为技术 ...

  8. jQuery插件AjaxFileUpload实现ajax文件上传时老是运行error方法 问题原因

    今天在用jQuery插件AjaxFileUpload实现ajax文件上传时,遇到一个问题,如图: 老是运行error.无法运行succes方法,追踪ajaxfileupload.js源代码发现: wa ...

  9. hadoop的关键进程 分类: A1_HADOOP 2015-06-06 11:37 52人阅读 评论(0) 收藏

    hadoop集群中主要进程有 master:   NameNode, ResourceManager, slaves:   DataNode, NodeManager,  RunJar, MRAppM ...

  10. [RxJS] Replace zip with combineLatest when combining sources of data

    This lesson will highlight the true purpose of the zip operator, and how uncommon its use cases are. ...