Python 37 进程池与线程池 、 协程
一:进程池与线程池
提交任务的两种方式:
1、同步调用:提交完一个任务之后,就在原地等待,等任务完完整整地运行完毕拿到结果后,再执行下一行代码,会导致任务是串行执行
2、异步调用:提交完一个任务之后,不是原地等待,而是直接执行下一行代码,会导致任务是并发执行的,结果future对象会在任务运行完毕后自动传给回调函数
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
import time, random, os def task(name, n):
print('%s%s is running' % (name, os.path.getpid()))
time.sleep(random.randint(1, 3))
return n ** 2 if __name__ == '__main__':
# print(os.cpu_count())
p = ProcessPoolExecutor(4) l = []
for i in range(5):
# 同步提交
# res = p.submit(task, '进程pid:', i).result()
# print(res) # 异步提交
future=p.submit(task,'进程pid:',i)
l.append(future) p.shutdown(wait=True) # 关闭进程池的入口,并且在原地等待进程池内所有任务运行完毕 for future in l:
print(future.result)
print('主')
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
import time,random,os
import requests def get(url):
print('%s GET %s' %(os.getpid(),url))
time.sleep(3)
response=requests.get(url)
if response.status_code == 200:
res=response.text
else:
res='下载失败'
parse(res) def parse(res):
time.sleep(1)
print('%s 解析结果为%s' %(os.getpid(),len(res))) if __name__ == '__main__':
urls=[
'https://www.baidu.com',
'https://www.sina.com.cn',
'https://www.tmall.com',
'https://www.jd.com',
'https://www.python.org',
'https://www.openstack.org',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com', ] p=ProcessPoolExecutor(9)
l=[]
start=time.time()
for url in urls:
future=p.submit(get,url)
l.append(future)
p.shutdown(wait=True) print('主',time.time()-start)
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
import time,random,os
import requests def get(ur1):
print('%s GET %s'%(os.getpid(),ur1))
time.sleep(3)
response=requests.get(ur1)
if response.status_code==200:
res=response.text
else:
res='下载失败'
parse(res) def parse(res):
time.sleep(1)
print('%s 解析结果为%s'%(os.getpid(),len(res))) if __name__ == '__main__':
urls=[
'https://www.baidu.com'
'https://www.youku.com'
'https://www.wangyiyun.com'
'https://www.baidu.com'
'https://www.baidu.com'
'https://www.baidu.com' ] p=ProcessPoolExecutor(9)
l=[]
start=time.time()
for url in urls:
future=p.submit(get,url)
l.append(future)
p.shutdown(wait=True) print('主',time.time()-start)
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
from threading import current_thread
import time, random, os
import requsets def get(url):
print('%s GET %s' % (current_thread().name, url))
time.sleep(3)
respose = requsets.get(url)
if respose.status_code == 200:
res = respose.text
else:
res = '下载失败'
return res def parse(future):
time.sleep(1)
res = future.result()
print('%s 解析结果为%s' % (current_thread().name, len(res))) if __name__ == '__main__':
urls = [
'https://www.baidu.com'
'https://www.youku.com'
'https://www.wangyiyun.com'
'https://www.baidu.com'
'https://www.baidu.com'
'https://www.baidu.com' ] p = ProcessPoolExecutor(9) start = time.time()
for url in urls:
future = p.submit(get, url)
# 异步调用:提交完一个任务之后,不是原地等待,
# 而是直接执行下一行代码,会导致任务是并发执行的,
# 结果future对象会在任务运行完毕后自动传给回调函数
future.add_done_callback(parse) # parse会在任务运行完毕后自动触发,然后接收一个参数future对象 p.shutdown(wait=True) print('主', time.time() - start)
print('主', os.getpid())
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
from threading import current_thread
import time,random,os
import requests def get(url):
print('%s GET %s'%(current_thread().name,url))
time.sleep(3)
response=requests.get(url)
if response.status_code==200:
res=response.text
else:
res='下载失败'
return res def parse(future):
time.sleep(1)
res=future.result()
print('%s 解析结果为%s'%(current_thread().name,len(res))) if __name__ == '__main__':
urls = [
'https://www.baidu.com'
'https://www.youku.com'
'https://www.wangyiyun.com'
'https://www.baidu.com'
'https://www.baidu.com'
'https://www.baidu.com' ] p=ThreadPoolExecutor(4) for url in urls:
future=p.submit(get,url)
future.add_done_callback(parse) p.shutdown(wait=True)
print('主',current_thread().name)
二:协程
协程介绍
协程是单线程下的并发,又称微线程,英文名 Coroutine
一句话说明什么是线程:协程是一种后能耗态的轻量级线程,即协程是由用户程序自己控制调度的。
需要强调的是:
#1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
#2. 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)
对比操作系统控制线程的切换,用户在单线程内控制协程的切换
优点如下:
#1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
#2. 单线程内就可以实现并发的效果,最大限度地利用cpu
缺点如下:
#1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
#2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程
总结协程特点:
1、必须在只有一个单线程里实现并发
2、修改共享数据不需要加锁
3、用户程序里总结保存多个控制流的上下文栈
4、附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield,greenlet都无法实现,就用到了gevent模块(select机制))
基于单线程下实现并发,只有一个主线程(如下图:可利用的CPU只有一个)的情况下实现并发,并发的本质:切换+保存状态
CPU正在运行一个任务,会在两种情况下自习其他任务(切换由操作系统强制控制),一种情况是该任务发生了阻塞,另外一种情况是该任务占用时间过长或有一个优先级更高的程序代替了它
#串行执行
import time
def func1():
for i in range(10000):
i+1 def func2():
for i in range(10000):
i+1 start=time.time()
func1()
func2()
stop=time.time()
print(stop -start)
串行执行
#1 yiled可以保存状态,yield的状态保存与操作系统的保存线程状态很像,但是yield是代码级别控制的,更轻量级
#2 send可以把一个函数的结果传给另外一个函数,以此实现单线程内程序之间的切换
#基于yield并发执行
import time
def func1():
while True:
print('func1')
10000+1
yield def func2():
g=func1()
for i in range(10000): print('func2')
time.sleep(100)
i+1
next(g) start=time.time()
func2()
stop=time.time()
print(stop-start)
yield并发执行
ps:在介绍进程理论时,提及进程的三种执行状态,而线程才是执行单位,所以可以将上图理解为线程的三种状态
Python 37 进程池与线程池 、 协程的更多相关文章
- Python进程、线程、协程的对比
1. 执行过程 每个线程有一个程序运行的入口.顺序执行序列和程序的出口.但是线程不能够独立执行,必须依存在进程中,由进程提供多个线程执行控制.每个线程都有他自己的一组CPU寄存器,称为线程的上下文,该 ...
- python系列之 - 并发编程(进程池,线程池,协程)
需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加 ...
- python并发编程之进程池,线程池,协程
需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加 ...
- python并发编程之进程池、线程池、协程
需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加 ...
- Python Django 协程报错,进程池、线程池与异步调用、回调机制
一.问题描述 在Django视图函数中,导入 gevent 模块 import gevent from gevent import monkey; monkey.patch_all() from ge ...
- python中socket、进程、线程、协程、池的创建方式和应用场景
进程 场景 利用多核.高计算型的程序.启动数量有限 进程是计算机中最小的资源分配单位 进程和线程是包含关系 每个进程中都至少有一条线程 可以利用多核,数据隔离 创建 销毁 切换 时间开销都比较大 随着 ...
- python之进程池与线程池
一.进程池与线程池介绍 池子使用来限制并发的任务数目,限制我们的计算机在一个自己可承受的范围内去并发地执行任务 当并发的任务数远远超过了计算机的承受能力时,即无法一次性开启过多的进程数或线程数时就应该 ...
- Python并发编程之进程池与线程池
一.进程池与线程池 python标准模块concurrent.futures(并发未来) 1.concurrent.futures模块是用来创建并行的任务,提供了更高级别的接口,为了异步执行调用 2. ...
- 8.15 day33 进程池与线程池_协程_IO模型(了解)
进程池和线程池 开进程开线程都需要消耗资源,只不过两者比较的情况线程消耗的资源比较少 在计算机能够承受范围之内最大限度的利用计算机 什么是池? 在保证计算机硬件安全的情况下最大限度地利用计算机 ...
随机推荐
- tailf
功能说明:tailf命令几乎等同于tail -f,与tail -f不同的是,如果文件不增长,那么它不会去访问磁盘文件,也不会更改文件的访问时间.tailf命令在工作中的主要使命就是跟踪日志文件,首先将 ...
- 我所理解的Android和iOS上的View
View,几乎是所有界面系统中的基类,在iOS里面是UIView,在Android里是View. 那么,到底View是什么东西,他做了些什么,他是怎么做到的,在这篇文章中,希望能带给大家一些启发. 抽 ...
- 如何知道自己的CPU支持SLAT
因为WP8 SDK发布,很多WP8的开发者们也开始陆续安装WP8的SDK的,然而安装WP8的SDK有很多软件和硬件的要求,其中有一个就是——要求CPU支持二级地址转换(SLAT),如果CPU不支持二级 ...
- C# invoke和begininvoke的用法
namespace invoke和begininvoke的用法 { public partial class Form1 : Form { public Form1() { InitializeCom ...
- 用shell编写dhcp自动获取脚本
#!/bin/bash#net=$(ifconfig ens33 | awk -F'[ .]+' '/inet\>/{print $3"."$4"."$5 ...
- POJ-2135-Farm Tour(最大费用最小流)模板
Farm Tour POJ - 2135 When FJ's friends visit him on the farm, he likes to show them around. His farm ...
- 牛刀小试MySQL学习—MySQL 双主
双主其实说白了也是一个replication,只是推出一些新的拓扑结构 主-主的复制有两种模式: 主动-主动模式下的主-主复制(Master-Master in Active-Active Mod ...
- [luoguP1816] 忠诚(st表 || 线段树)
传送门 其实我就是想练练 st表 本以为学了线段树可以省点事不学 st表 了 但是后缀数组中用 st表 貌似很方便 所以还是学了吧,反正也不难 ——代码 #include <cstdio> ...
- [TS-A1505] [清橙2013中国国家集训队第二次作业] 树 [可持久化线段树,求树上路径第k大]
按Dfs序逐个插入点,建立可持久化线段树,每次查询即可,具体详见代码. 不知道为什么,代码慢的要死,, #include <iostream> #include <algorithm ...
- Office 2003的卸载 与 Office 2013 的安装
一.Office 2003的卸载 软件:卸载Office2003.msi 运行该软件,等待几分钟即可, 二.Office 2013 的安装 1.Office Professional Plus 201 ...