概率DP

dp[j][d] 表示不经过i点走d步到j的概率, dp[j][d]=sigma ( dp[k][d-1] * Probability )

ans = sigma ( dp[j][D] )

Walk

Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 401    Accepted Submission(s): 261

Special Judge

Problem Description
I used to think I could be anything, but now I know that I couldn't do anything. So I started traveling.



The nation looks like a connected bidirectional graph, and I am randomly walking on it. It means when I am at node i, I will travel to an adjacent node with the same probability in the next step. I will pick up the start node randomly (each node in the graph
has the same probability.), and travel for d steps, noting that I may go through some nodes multiple times.



If I miss some sights at a node, it will make me unhappy. So I wonder for each node, what is the probability that my path doesn't contain it.
 
Input
The first line contains an integer T, denoting the number of the test cases.



For each test case, the first line contains 3 integers n, m and d, denoting the number of vertices, the number of edges and the number of steps respectively. Then m lines follows, each containing two integers a and b, denoting there is an edge between node
a and node b.



T<=20, n<=50, n-1<=m<=n*(n-1)/2, 1<=d<=10000. There is no self-loops or multiple edges in the graph, and the graph is connected. The nodes are indexed from 1.
 
Output
For each test cases, output n lines, the i-th line containing the desired probability for the i-th node.



Your answer will be accepted if its absolute error doesn't exceed 1e-5.
 
Sample Input
2
5 10 100
1 2
2 3
3 4
4 5
1 5
2 4
3 5
2 5
1 4
1 3
10 10 10
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
4 9
 
Sample Output
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.6993317967
0.5864284952
0.4440860821
0.2275896991
0.4294074591
0.4851048742
0.4896018842
0.4525044250
0.3406567483
0.6421630037
 
Source
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector> using namespace std; const int maxn=10010; int n,m,D;
vector<int> g[maxn];
double dp[55][maxn]; int main()
{
int T_T;
scanf("%d",&T_T);
while(T_T--)
{
scanf("%d%d%d",&n,&m,&D);
for(int i=0;i<=n+1;i++) g[i].clear();
while(m--)
{
int a,b;
scanf("%d%d",&a,&b);
g[a].push_back(b);
g[b].push_back(a);
}
for(int i=1;i<=n;i++)
{
memset(dp,0,sizeof(dp));
for(int j=1;j<=n;j++)
{
if(i!=j) dp[j][0]=1.0/n;
} for(int d=1;d<=D;d++)
{
for(int j=1;j<=n;j++)
{
if(j==i) continue;
for(int k=0,sz=g[j].size();k<sz;k++)
{
int v=g[j][k];
if(v!=i) dp[j][d]+=dp[v][d-1]*(1./g[v].size());
}
}
} double ans=0.0;
for(int j=1;j<=n;j++)
{
if(i!=j) ans+=dp[j][D];
}
printf("%.10lf\n",ans);
}
}
return 0;
}

HDOJ 5001 Walk的更多相关文章

  1. BFS+贪心 HDOJ 5335 Walk Out

    题目传送门 /* 题意:求从(1, 1)走到(n, m)的二进制路径值最小 BFS+贪心:按照标程的作法,首先BFS搜索所有相邻0的位置,直到1出现.接下去从最靠近终点的1开始, 每一次走一步,不走回 ...

  2. 离散化+BFS HDOJ 4444 Walk

    题目传送门 /* 题意:问一个点到另一个点的最少转向次数. 坐标离散化+BFS:因为数据很大,先对坐标离散化后,三维(有方向的)BFS 关键理解坐标离散化,BFS部分可参考HDOJ_1728 */ # ...

  3. Hdu 5001 Walk 概率dp

    Walk Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5001 Desc ...

  4. HDU - 5001 Walk(概率dp+记忆化搜索)

    Walk I used to think I could be anything, but now I know that I couldn't do anything. So I started t ...

  5. HDU 5001 Walk (暴力、概率dp)

    Walk Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Sub ...

  6. HDU 5001 Walk

    解题思路:这是一道简单的概率dp,只要处理好相关的细节就可以了. dp[d][i]表示走d步时走到i的改概率,具体参考代码: #include<cstdio> #include<cs ...

  7. hdoj 5335 Walk Out

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5335 #include<stdio.h> #include<cstring> ...

  8. 【HDOJ】4579 Random Walk

    1. 题目描述一个人沿着一条长度为n个链行走,给出了每秒钟由i到j的概率($i,j \in [1,n]$).求从1开始走到n个时间的期望. 2. 基本思路显然是个DP.公式推导也相当容易.不妨设$dp ...

  9. HDOJ 1009. Fat Mouse' Trade 贪心 结构体排序

    FatMouse' Trade Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

随机推荐

  1. [NOI.AC#31]MST 计数类DP

    链接 注意到 \(n\) 只有40,爆搜一下发现40的整数拆分(相当于把 \(n\) 分成几个联通块)很少 因此可以枚举联通块状态来转移,这个状态直接用vector存起来,再用map映射,反正40也不 ...

  2. Android学习笔记进阶九之Matrix对称变换

    网上很多的倒影特效实际上就是一个对称变换,在改变透明度即可. Matrix对称变换包括很多种,有关于Y轴对称,关于X轴对称,关于y= -x对称等等. 1 关于Y轴对称 // 获取资源文件的引用res ...

  3. IO流学习笔记

    1.File类 文件和目录路径名的抽象表示形式. 4种构造方法 File(File parent, String child) File(File parent, String child) File ...

  4. Day3下午解题报告

    预计分数:20+40+30=90 实际分数:40+90+60=190 再次人品爆发&&手感爆发&&智商爆发 谁能告诉我为什么T1数据这么水.. 谁能告诉我为什么T2数据 ...

  5. C#与C++ DLL的交互

    C#与C++交互,总体来说可以有两种方法: 1.利用C++/CLI作为代理中间层 2.利用PInvoke实现直接调用   第一种方法:实现起来比较简单直观,并且可以实现C#调用C++所写的类,但是问题 ...

  6. 【Educational Codeforces Round 35 A】 Nearest Minimums

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 找出最小的数字的位置. 最近的肯定是相邻的某对. [代码] #include <bits/stdc++.h> using ...

  7. 洛谷 P1610 鸿山洞的灯

    P1610 鸿山洞的灯 题目描述 已知n盏灯以及每盏灯的位置p[i],p[i]均不相等,两盏相邻的灯当小于dist时,若这个安全距离里面还有灯是亮着时,就可以关掉该盏灯,(即若第i-1盏与第i+1盏的 ...

  8. ASP.NET MVC案例教程(基于ASP.NET MVC beta)——第五篇:MVC整合Ajax

    摘要      本文将从完成“输入数据验证”这个功能出发,逐渐展开ASP.NET MVC与Ajax结合的方法.首先,本文将使用ASP.NET MVC提供的同步方式完成数据验证.而后,将分别结合ASP. ...

  9. Android开发人员应该知道的Kotlin

    本文来源于我在InfoQ中文站翻译的文章,原文地址是:http://www.infoq.com/cn/news/2016/01/kotlin-android Android开发人员在语言限制方面面临着 ...

  10. Day1:循环语句(While,For)

    一.while循环 while 条件: 条件为真执行的语句 esle: 条件为假执行的语句 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author: ...