概率DP

dp[j][d] 表示不经过i点走d步到j的概率, dp[j][d]=sigma ( dp[k][d-1] * Probability )

ans = sigma ( dp[j][D] )

Walk

Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 401    Accepted Submission(s): 261

Special Judge

Problem Description
I used to think I could be anything, but now I know that I couldn't do anything. So I started traveling.



The nation looks like a connected bidirectional graph, and I am randomly walking on it. It means when I am at node i, I will travel to an adjacent node with the same probability in the next step. I will pick up the start node randomly (each node in the graph
has the same probability.), and travel for d steps, noting that I may go through some nodes multiple times.



If I miss some sights at a node, it will make me unhappy. So I wonder for each node, what is the probability that my path doesn't contain it.
 
Input
The first line contains an integer T, denoting the number of the test cases.



For each test case, the first line contains 3 integers n, m and d, denoting the number of vertices, the number of edges and the number of steps respectively. Then m lines follows, each containing two integers a and b, denoting there is an edge between node
a and node b.



T<=20, n<=50, n-1<=m<=n*(n-1)/2, 1<=d<=10000. There is no self-loops or multiple edges in the graph, and the graph is connected. The nodes are indexed from 1.
 
Output
For each test cases, output n lines, the i-th line containing the desired probability for the i-th node.



Your answer will be accepted if its absolute error doesn't exceed 1e-5.
 
Sample Input
2
5 10 100
1 2
2 3
3 4
4 5
1 5
2 4
3 5
2 5
1 4
1 3
10 10 10
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
4 9
 
Sample Output
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.6993317967
0.5864284952
0.4440860821
0.2275896991
0.4294074591
0.4851048742
0.4896018842
0.4525044250
0.3406567483
0.6421630037
 
Source
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector> using namespace std; const int maxn=10010; int n,m,D;
vector<int> g[maxn];
double dp[55][maxn]; int main()
{
int T_T;
scanf("%d",&T_T);
while(T_T--)
{
scanf("%d%d%d",&n,&m,&D);
for(int i=0;i<=n+1;i++) g[i].clear();
while(m--)
{
int a,b;
scanf("%d%d",&a,&b);
g[a].push_back(b);
g[b].push_back(a);
}
for(int i=1;i<=n;i++)
{
memset(dp,0,sizeof(dp));
for(int j=1;j<=n;j++)
{
if(i!=j) dp[j][0]=1.0/n;
} for(int d=1;d<=D;d++)
{
for(int j=1;j<=n;j++)
{
if(j==i) continue;
for(int k=0,sz=g[j].size();k<sz;k++)
{
int v=g[j][k];
if(v!=i) dp[j][d]+=dp[v][d-1]*(1./g[v].size());
}
}
} double ans=0.0;
for(int j=1;j<=n;j++)
{
if(i!=j) ans+=dp[j][D];
}
printf("%.10lf\n",ans);
}
}
return 0;
}

HDOJ 5001 Walk的更多相关文章

  1. BFS+贪心 HDOJ 5335 Walk Out

    题目传送门 /* 题意:求从(1, 1)走到(n, m)的二进制路径值最小 BFS+贪心:按照标程的作法,首先BFS搜索所有相邻0的位置,直到1出现.接下去从最靠近终点的1开始, 每一次走一步,不走回 ...

  2. 离散化+BFS HDOJ 4444 Walk

    题目传送门 /* 题意:问一个点到另一个点的最少转向次数. 坐标离散化+BFS:因为数据很大,先对坐标离散化后,三维(有方向的)BFS 关键理解坐标离散化,BFS部分可参考HDOJ_1728 */ # ...

  3. Hdu 5001 Walk 概率dp

    Walk Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5001 Desc ...

  4. HDU - 5001 Walk(概率dp+记忆化搜索)

    Walk I used to think I could be anything, but now I know that I couldn't do anything. So I started t ...

  5. HDU 5001 Walk (暴力、概率dp)

    Walk Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Sub ...

  6. HDU 5001 Walk

    解题思路:这是一道简单的概率dp,只要处理好相关的细节就可以了. dp[d][i]表示走d步时走到i的改概率,具体参考代码: #include<cstdio> #include<cs ...

  7. hdoj 5335 Walk Out

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5335 #include<stdio.h> #include<cstring> ...

  8. 【HDOJ】4579 Random Walk

    1. 题目描述一个人沿着一条长度为n个链行走,给出了每秒钟由i到j的概率($i,j \in [1,n]$).求从1开始走到n个时间的期望. 2. 基本思路显然是个DP.公式推导也相当容易.不妨设$dp ...

  9. HDOJ 1009. Fat Mouse' Trade 贪心 结构体排序

    FatMouse' Trade Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

随机推荐

  1. 通俗理解vuex原理---通过vue例子类比

    本文主要通过简单的理解来解释下vuex的基本流程,而这也是vuex难点之一. 首先我们先了解下vuex的作用 vuex其实是集中的数据管理仓库,相当于数据库mongoDB,MySQL等,任何组件都可以 ...

  2. Appium_python3 抓取客户端toast

    在客户端登录或者退出登录的时候会有吐司提示,因此需要抓取来验证用户登录成功或者注销成功: 在获取toast之前需要添加   desired_caps['automationName'] = 'Uiau ...

  3. 洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II

    洛谷 P2616 [USACO10JAN]购买饲料II Buying Feed, II https://www.luogu.org/problemnew/show/P2616 题目描述 Farmer ...

  4. hysbz 2243 染色(树链剖分)

    题目链接:hysbz 2243 染色 题目大意:略. 解题思路:树链剖分+线段树的区间合并,可是区间合并比較简单,节点仅仅要记录左右端点的颜色就可以. #include <cstdio> ...

  5. 【C语言】编写函数实现库函数atoi,把字符串转换成整形

    //编写函数实现库函数atoi.把字符串转换成整形 #include <stdio.h> #include <string.h> int my_atoi(const char ...

  6. 用电脑从Google Play下载apk

    用电脑从Google Play下载apk 方法一:给Chrome浏览器安装apk-downloader插件,需禁止 SSL 错误警告,即在Chrome的快捷方式上加入"--ignore-ce ...

  7. 【前端统计图】echarts实现属性修改

    原图: 原代码: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> < ...

  8. 【例题 7-9 UVA-1601】The Morning after Halloween

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 对于没有出现的,当成0节点就好. 所以总是认为有3个人需要走到各自的终点. 将平面图转成点边图.这样比较好枚举. (二维变成一维,模 ...

  9. Mrakdonw学习

    转载请注明出处:http://blog.csdn.net/cym492224103 什么是Mrakdown 为什么使用Mrakdown 怎样Mrakdown 字体 删除线 字体大小 引用 代码行代码块 ...

  10. oracle exp 备份脚本

    #!/bin/bash#Oracle 环境变量 NLS_LANG=AMERICAN_AMERICA.AL32UTF8 ORACLE_SID=zgw ORACLE_BASE=/opt/oracle OR ...