HDOJ 5001 Walk
概率DP
dp[j][d] 表示不经过i点走d步到j的概率, dp[j][d]=sigma ( dp[k][d-1] * Probability )
ans = sigma ( dp[j][D] )
Walk
Time Limit: 30000/15000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 401 Accepted Submission(s): 261
Special Judge
The nation looks like a connected bidirectional graph, and I am randomly walking on it. It means when I am at node i, I will travel to an adjacent node with the same probability in the next step. I will pick up the start node randomly (each node in the graph
has the same probability.), and travel for d steps, noting that I may go through some nodes multiple times.
If I miss some sights at a node, it will make me unhappy. So I wonder for each node, what is the probability that my path doesn't contain it.
For each test case, the first line contains 3 integers n, m and d, denoting the number of vertices, the number of edges and the number of steps respectively. Then m lines follows, each containing two integers a and b, denoting there is an edge between node
a and node b.
T<=20, n<=50, n-1<=m<=n*(n-1)/2, 1<=d<=10000. There is no self-loops or multiple edges in the graph, and the graph is connected. The nodes are indexed from 1.
Your answer will be accepted if its absolute error doesn't exceed 1e-5.
2
5 10 100
1 2
2 3
3 4
4 5
1 5
2 4
3 5
2 5
1 4
1 3
10 10 10
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
4 9
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.6993317967
0.5864284952
0.4440860821
0.2275896991
0.4294074591
0.4851048742
0.4896018842
0.4525044250
0.3406567483
0.6421630037
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector> using namespace std; const int maxn=10010; int n,m,D;
vector<int> g[maxn];
double dp[55][maxn]; int main()
{
int T_T;
scanf("%d",&T_T);
while(T_T--)
{
scanf("%d%d%d",&n,&m,&D);
for(int i=0;i<=n+1;i++) g[i].clear();
while(m--)
{
int a,b;
scanf("%d%d",&a,&b);
g[a].push_back(b);
g[b].push_back(a);
}
for(int i=1;i<=n;i++)
{
memset(dp,0,sizeof(dp));
for(int j=1;j<=n;j++)
{
if(i!=j) dp[j][0]=1.0/n;
} for(int d=1;d<=D;d++)
{
for(int j=1;j<=n;j++)
{
if(j==i) continue;
for(int k=0,sz=g[j].size();k<sz;k++)
{
int v=g[j][k];
if(v!=i) dp[j][d]+=dp[v][d-1]*(1./g[v].size());
}
}
} double ans=0.0;
for(int j=1;j<=n;j++)
{
if(i!=j) ans+=dp[j][D];
}
printf("%.10lf\n",ans);
}
}
return 0;
}
HDOJ 5001 Walk的更多相关文章
- BFS+贪心 HDOJ 5335 Walk Out
题目传送门 /* 题意:求从(1, 1)走到(n, m)的二进制路径值最小 BFS+贪心:按照标程的作法,首先BFS搜索所有相邻0的位置,直到1出现.接下去从最靠近终点的1开始, 每一次走一步,不走回 ...
- 离散化+BFS HDOJ 4444 Walk
题目传送门 /* 题意:问一个点到另一个点的最少转向次数. 坐标离散化+BFS:因为数据很大,先对坐标离散化后,三维(有方向的)BFS 关键理解坐标离散化,BFS部分可参考HDOJ_1728 */ # ...
- Hdu 5001 Walk 概率dp
Walk Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5001 Desc ...
- HDU - 5001 Walk(概率dp+记忆化搜索)
Walk I used to think I could be anything, but now I know that I couldn't do anything. So I started t ...
- HDU 5001 Walk (暴力、概率dp)
Walk Time Limit: 30000/15000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Sub ...
- HDU 5001 Walk
解题思路:这是一道简单的概率dp,只要处理好相关的细节就可以了. dp[d][i]表示走d步时走到i的改概率,具体参考代码: #include<cstdio> #include<cs ...
- hdoj 5335 Walk Out
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5335 #include<stdio.h> #include<cstring> ...
- 【HDOJ】4579 Random Walk
1. 题目描述一个人沿着一条长度为n个链行走,给出了每秒钟由i到j的概率($i,j \in [1,n]$).求从1开始走到n个时间的期望. 2. 基本思路显然是个DP.公式推导也相当容易.不妨设$dp ...
- HDOJ 1009. Fat Mouse' Trade 贪心 结构体排序
FatMouse' Trade Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
随机推荐
- 72.挖掘CSDN密码到链表并统计密码出现次数生成密码库
list.h #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> #include & ...
- 解决vmware 和hyper-v不能共存的问题
只需在 Windows 中以管理员身份运行命令提示符 cmd 1.运行 bcdedit /copy {current} /d "Windows 8 (关闭 Hyper-V)"命令, ...
- 配置spotlight连接linux服务器
本文转自(https://blog.csdn.net/qq_31391261/article/details/79429098) 一.配置spotlight连接linux服务器 1.以管理员身份运行软 ...
- 洛谷 【P1252】马拉松接力赛
洛谷 [P1252]马拉松接力赛 题目描述 某城市冬季举办环城25km马拉松接力赛,每个代表队有5人参加比赛,比赛要求每个的每名参赛选手只能跑一次,一次至少跑1km.最多只能跑10km,而且每个选手所 ...
- 洛谷 P1130 红牌
P1130 红牌 题目描述 某地临时居民想获得长期居住权就必须申请拿到红牌.获得红牌的过程是相当复杂 ,一共包括N个步骤.每一步骤都由政府的某个工作人员负责检查你所提交的材料是否符合条件.为了加快进程 ...
- nginx+tomcat 架构 HttpServletRequest.getScheme()获取正确的协议
http://blog.csdn.net/ofofw/article/details/46791447
- Cocos2d 游戏状态机
加cocos2d 是标题党. 事实上跟cocos2d无关. 1.游戏背景介绍 比方有这么一个"记忆"类的比赛游戏.你和电脑对战.轮到谁的回合,谁翻两张牌.假设两张牌一样,就消掉这两 ...
- Maven学习总结(16)——深入理解maven生命周期和插件
在项目里用了快一年的maven了,最近突然发现maven项目在eclipse中build时非常慢,因为经常用clean install命令来build项目,也没有管那么多,但最近实在受不了乌龟一样的b ...
- 前端项目课程7 banner设计注意事项
前端项目课程7 banner设计注意事项 一.总结 一句话总结: 1.每个部分的里面的部分可以用相同的名字么,如何修改样式呢? 可以, 用模块名 + 比如上中下(top middle bottom) ...
- Spring5源码深度解析(一)之理解Configuration注解
代码地址:https://github.com/showkawa/spring-annotation/tree/master/src/main/java/com/brian 1.Spring体系结构 ...