第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为 或者 。

第二类Stirling数的推导和第一类Stirling数类似,可以从定义出发考虑第n+1个元素的情况,假设要把n+1个元素分成m个集合则分析如下:
(1)如果n个元素构成了m-1个集合,那么第n+1个元素单独构成一个集合。方案数 。
(2)如果n个元素已经构成了m个集合,将第n+1个元素插入到任意一个集合。方案数 m*S(n,m) 。
 
综合两种情况得:

 
 
递推式:dp[i][j] = dp[i-1][j-1]+j*dp[i-1][j];
 
 
 
模板代码:
      dp[][] = ;
for(int i = ;i <= n; i++){
for(int j = ;j <= i; j++){
dp[i][j] = dp[i-][j-]+j*dp[i-][j];
}
}
n=0 1
n=1 0 1
n=2 0 1 1
n=3
0 1 3 1
n=4
0 1 7 6 1
n=5
0 1 15 25 10 1
n=6
0 1 31 90 65 15 1
n=7
0 1 63 301 350 140 21 1
n=8
0 1 127 966 1701 1050 266 28 1
n=9
0 1 255 3025 7770 6951 2646 462 36 1
 

【算法】第二类斯特林数Stirling的更多相关文章

  1. 特殊计数序列——第二类斯特林(stirling)数

    计算式 \[ S(n,m)=S(n-1,m-1)+mS(n,m) \] \(S(0,0)=1,S(i,0)=0(i>0)\) 组合意义 将\(n\)个不可分辨的小球放入\(m\)个不可分辨的盒子 ...

  2. HDU2643(SummerTrainingDay05-P 第二类斯特林数)

    Rank Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  3. 8-机器分配(hud4045-组合+第二类斯特林数)

    http://acm.hdu.edu.cn/showproblem.php?pid=4045 Machine schedulingTime Limit: 5000/2000 MS (Java/Othe ...

  4. swjtu oj Paint Box 第二类斯特林数

    http://swjtuoj.cn/problem/2382/ 题目的难点在于,用k种颜色,去染n个盒子,并且一定要用完这k种颜色,并且相邻的格子不能有相同的颜色, 打了个表发现,这个数是s(n, k ...

  5. HDU2512 一卡通大冒险 —— 第二类斯特林数

    题目链接:https://vjudge.net/problem/HDU-2512 一卡通大冒险 Time Limit: 2000/1000 MS (Java/Others)    Memory Lim ...

  6. 新疆大学(新大)OJ xju 1006: 比赛排名 第二类斯特林数+阶乘

    题目链接:http://acm.xju.edu.cn/JudgeOnline/problem.php?id=1006 第二类斯特林数: 第二类Stirling数实际上是集合的一个拆分,表示将n个不同的 ...

  7. 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)

    [BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...

  8. 【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)

    [BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i= ...

  9. CF932E Team Work(第二类斯特林数)

    传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k ...

随机推荐

  1. Flask-Restful

    定义Restful的视图 安装:pip install flask-restful 如果使用Flask-restful,那么定义视图函数的时候,就要继承flask_restful.Resourse类, ...

  2. roboware-studio 使用教程

    一.创建工作区 1.1 新建工作区 1.2 选择路径并添加工作区的名字 catkin_ws 二.创建程序包 创建ROS包并添加依赖 my_package roscpp std_msgs 三.添加并编写 ...

  3. POJ 2771 最大独立集 匈牙利算法

    (为什么最大独立集的背景都是严打搞对象的( _ _)ノ|壁) 思路:匈牙利算法 没什么可说的-- // by SiriusRen #include <cstdio> #include &l ...

  4. 在js在添版本号

    为了增加用户访问网站体验,快速打开网页,许多网站都对不常更新的js,css文件在浏览器端设置了缓存.但如果在服务器端做了更新,浏览器使用的仍是缓存在本地的js文件,除非强制清缓存(ctrl+F5).为 ...

  5. MVC的一些常用特性,持续更新中。。。

    1. @MvcHtmlString.Create("<option value='1'>火星</option>")   //渲染Html

  6. Reflection (computer programming) -反射-自身结构信息

    n computer science, reflection is the ability of a computer program to examine, introspect, and modi ...

  7. ZBrush软件中的笔触类型

    在ZBrush® 中我们通过各种笔触类型,确定在使用ZBrush®画笔进行绘制时画笔的变化方式及状态.使用多种画笔绘制根据选择不同的笔触组合绘制,能够得到繁多变化丰富的制作效果. 选择笔触的类型 点击 ...

  8. 一些AngularJs

    # AngularJs部分 #     详情可参考文档----依赖注入--不是主动地获取而是被动的接收,需要什么就要什么,这样灵活较高,如:$scope ----指令--内部:ng-    如:ng- ...

  9. [USACO18OPEN] Multiplayer Moo (并查集+维护并查集技巧)

    题目大意:给你一个N*N的棋盘,棋盘上每个点都有一个权值 第一问求一个权值形成的最大联通块中点的数量 第一问求两个权值共同形成的最大联通块中点的数量 提供一种并查集的做法:(感谢大佬们的题解)第一问把 ...

  10. python的基础及练习

    1.变量变是指变化,量是指反映某种状态例:level =1 或 2 username = ‘xuanxuan’password = ‘123’python里的“=”是赋值的意思,并不是真的等于 变量有 ...