最长上升子序列(LIS)nlogn模板
参考https://www.cnblogs.com/yuelian/p/8745807.html
注意最长上升子序列用lower_bound,最长不下降子序列用upper_bound
比如123458, 加入了5
假设求最长上升子序列
这个时候只能替换5,不能替换8(严格上升)
虽然没有用,但是这样不会错,写upper_bound就错了。
假设求最长不下降子序列
这样应该替换8,替换5并不是最优的
所以用upper_bound
最长上升子序列(LIS)nlogn模板
#include<cstdio>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 51234;
int a[MAXN], f[MAXN], n; //a数组从0开始,f数组从1开始
int main()
{
scanf("%d", &n);
REP(i, 0, n) scanf("%d", &a[i]);
int len = 1;
f[1] = a[0]; //初始化
REP(i, 1, n)
{
if(a[i] > f[len]) f[++len] = a[i]; //这里是++len 若是不下降就改为>=
else f[lower_bound(f + 1, f + len + 1, a[i]) - f] = a[i]; //注意f数组是从1开始
}
printf("%d\n", len);
return 0;
}
最长不下降子序列(LIS)nlogn模板
#include<cstdio>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 51234;
int a[MAXN], f[MAXN], n;
int main()
{
scanf("%d", &n);
REP(i, 0, n) scanf("%d", &a[i]);
int len = 1;
f[1] = a[0];
REP(i, 1, n)
{
if(a[i] >= f[len]) f[++len] = a[i]; //>改成>=
else f[upper_bound(f + 1, f + len + 1, a[i]) - f] = a[i]; //lower_bound改成upper_bound
}
printf("%d\n", len);
return 0;
}
如果要求最长下降子序列或者最长不上升子序列符号改变,同时二分加上cmp即可
另外有个神奇的定理
如果是求一个数组最少分成几组最长不上升子序列的话
答案就是最长上升子序列(上升改成下降也成立)
导弹拦截那题要用到
输出路径的版本,见https://blog.csdn.net/lxcxingc/article/details/81238008
#include<cstdio>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 51234;
int a[MAXN], f[MAXN];
int ans[MAXN], pos[MAXN], n;
int main()
{
scanf("%d", &n);
REP(i, 0, n) scanf("%d", &a[i]);
int len = 1;
f[1] = pos[1] = a[0];
REP(i, 1, n)
{
if(a[i] > f[len]) f[++len] = a[i], pos[i] = len;
else f[pos[i] = lower_bound(f + 1, f + len + 1, a[i]) - f] = a[i];
}
printf("%d\n", len);
int maxx = 1e9, t = len;
for(int i = n - 1; i >= 0; i--)
{
if(t == 0) break;
if(pos[i] == t && maxx > a[i])
{
maxx = a[i];
ans[t--] = a[i];
}
}
REP(i, 1, len + 1) printf("%d ", ans[i]);
puts("");
return 0;
}
最长上升子序列(LIS)nlogn模板的更多相关文章
- 动态规划——最长上升子序列LIS及模板
LIS定义 一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1 ...
- 最长上升子序列 LIS nlogn
给出一个 1 ∼ n (n ≤ 10^5) 的排列 P 求其最长上升子序列长度 Input 第一行一个正整数n,表示序列中整数个数: 第二行是空格隔开的n个整数组成的序列. Output 最长上升子序 ...
- AT2827 最长上升子序列LIS(nlogn的DP优化)
题意翻译 给定一长度为n的数列,请在不改变原数列顺序的前提下,从中随机的取出一定数量的整数,并使这些整数构成单调上升序列. 输出这类单调上升序列的最大长度. 数据范围:1<=n<=10 ...
- nlogn 求最长上升子序列 LIS
最近在做单调队列,发现了最长上升子序列O(nlogn)的求法也有利用单调队列的思想. 最长递增子序列问题:在一列数中寻找一些数,这些数满足:任意两个数a[i]和a[j],若i<j,必有a[i]& ...
- 最长递减子序列(nlogn)(个人模版)
最长递减子序列(nlogn): int find(int n,int key) { ; int right=n; while(left<=right) { ; if(res[mid]>ke ...
- 最长上升子序列LIS(51nod1134)
1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递 ...
- 【部分转载】:【lower_bound、upperbound讲解、二分查找、最长上升子序列(LIS)、最长下降子序列模版】
二分 lower_bound lower_bound()在一个区间内进行二分查找,返回第一个大于等于目标值的位置(地址) upper_bound upper_bound()与lower_bound() ...
- 洛谷1439:最长公共子序列(nlogn做法)
洛谷1439:最长公共子序列(nlogn做法) 题目描述: 给定两个序列求最长公共子序列. 这两个序列一定是\(1\)~\(n\)的全排列. 数据范围: \(1\leq n\leq 10^5\) 思路 ...
- 一个数组求其最长递增子序列(LIS)
一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外 ...
- 2.16 最长递增子序列 LIS
[本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...
随机推荐
- hadoop-11-ambari-server安装
hadoop-11-ambari-server安装 #ambari 安装yum install ambari-servercd mysql-5.7.18/cp mysql-connector-java ...
- 面向对象设计(OOD)七大原则
这篇文章我会不停的维护它,它将会越来越长,但它是关于我在面向对象中的一些学习的思考心得.希望对自己对各位都能实用处. 开篇前,说明一下写这篇文章的原因.原因是由于设计模式.由于设计模式里的各种 ...
- Python 入门学习 -----变量及基础类型(元组,列表,字典,集合)
Python的变量和数据类型 1 .python的变量是不须要事先定义数据类型的.能够动态的改变 2. Python其中一切皆对象,变量也是一个对象,有自己的属性和方法 我们能够通过 来查看变量的类型 ...
- 【Android进阶篇】Fragment的两种载入方式
一.概述 Fragment(碎片,片段)是在Android 3.0后才引入的,基本的目的是为了实如今大屏幕设备上的更加动态更加灵活的UI设计. 这是由于平板电脑的屏幕比手机大得多,所以屏幕上能够放很多 ...
- iOS - 设置导航栏之标题栏居中、标题栏的背景颜色
本章实现效果: Untitled.gif 前言: 项目中很多需求是要求自定义标题栏居中的,本人最近就遇到这中需求,如果用系统自带的titleView设置的话,不会居中,经过尝试,发现titleview ...
- spark scala word2vec 和多层分类感知器在情感分析中的实际应用
转自:http://www.cnblogs.com/canyangfeixue/p/7227998.html 对于威胁检测算法使用神经网络训练有用!!!TODO待实验 /** * Created by ...
- sklearn 词袋 CountVectorizer
from sklearn.feature_extraction.text import CountVectorizer texts=["dog cat fish","do ...
- VS自定义开发向导中的vsdir文件的简单说明
作者:朱金灿 来源:http://blog.csdn.net/clever101 VS自定义开发向导中有一个vsdir文件.这个文件指定了在VS中项目的标题.默认工程名等内容.下面对vsdir文件做一 ...
- Android-Context的一切
Context类型 我们知道,Android应用都是使用Java语言来编写的,那么大家可以思考一下,一个Android程序和一个Java程序,他们最大的区别在哪里?划分界限又是什么呢?其实简单点分析, ...
- sql 的几种常用方法
第一个项目总结基类:database:主要是定义有关数据库的方法: 1.打开数据库 public static void Open() { ( "server=.\\sqlexpress;d ...