题目大意

  已知序列$P$满足$|P|=N$,(以下所有$i,i\in[1,N]$)$\forall i, P_i\in [1,M]$。求$|\{P|\exists i, P_i =P_{i+1}\}|$。

题解

  容易想到运用正难则反的思想,先求出所有情况种数,再求出不符合情况种数。

  但这里“所有”是什么?是全排列吗?又是什么的全排列呢?“不符合”又是什么呢?我们说不清楚。

  那么怎么想?直接整体考虑太难,我们应当一位一位考虑。$\forall i,P_i$有$M$种取值。因此所有情况种数为$M^N$。关于不符合情况种数,第一位情况有$M$个,以后每一位为了不与前面相等,情况数为$M-1$。由乘法原理,不符合情况为$M(M-1)^{N-1}$。故答案为:$M^N-M(M-1)^{N-1}$。

注意

  $(a-b)\mod p\neq a\mod p-b\mod p$,$(a-b)\mod p=(a\mod p-b\mod p+p)\mod p$。

#include <cstdio>
#include <cstring>
using namespace std; #define ll long long ll Mult(ll a, ll b, ll p)
{
ll ans = 0;
while (b)
{
if (1 & b)
ans = (ans + a) % p;
a = (a + a) % p;
b >>= 1;
}
return ans;
} ll Power(ll a, ll n, ll p)
{
ll ans = 1;
while (n)
{
if (n & 1)
ans = Mult(ans, a, p);
a = Mult(a, a, p);
n >>= 1;
}
return ans;
} int main()
{
const ll P = 100003;
ll n, m;
scanf("%lld%lld", &m, &n);
printf("%lld\n", (Power(m, n, P) - Mult(m, Power(m - 1, n - 1, P), P) + P) % P);
return 0;
}

  

luogu3197 [HNOI2008] 越狱的更多相关文章

  1. bzoj1008 [HNOI2008]越狱

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5099  Solved: 2207 Description 监狱有 ...

  2. 【bzoj1008】[HNOI2008]越狱

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7692  Solved: 3296[Submit][Status] ...

  3. BZOJ 1008: [HNOI2008]越狱 快速幂

    1008: [HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生 ...

  4. BZOJ 1008 [HNOI2008]越狱

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5166  Solved: 2242[Submit][Status] ...

  5. BZOJ1008: [HNOI2008]越狱-快速幂+取模

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8689  Solved: 3748 Description 监狱有 ...

  6. BZOJ 1008 [HNOI2008]越狱 (简单排列组合 + 快速幂)

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 10503  Solved: 4558[Submit][Status ...

  7. 洛谷 P3197 [HNOI2008]越狱 解题报告

    P3197 [HNOI2008]越狱 题目描述 监狱有连续编号为\(1-N\)的\(N\)个房间,每个房间关押一个犯人,有\(M\)种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可 ...

  8. [HNOI2008]越狱 题解(容斥原理+快速幂)

    [HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多 ...

  9. BZOJ 1008 [HNOI2008]越狱 排列组合

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4788  Solved: 2060[Submit][Status] ...

随机推荐

  1. 小白写的一个ASP.NET分页控件,仅供娱乐

    无聊,第一次写博客,自己动手写了一个分页控件.由于我是新手,有很多地方写得不够好,希望各位大牛多多指正.哈哈哈 /// <summary> /// 分页控件 /// </summar ...

  2. js动态追加的元素如何触发事件

    一般通过js或者jQuery动态添加的元素标签,通过该元素标签.class.id触发事件,是无效的.如下所示: <body> <input type="text" ...

  3. 溢出文本省略号的js实现

    function ellipsis(element) { var limitWidth = element.clientWidth; var temp = element.cloneNode(true ...

  4. 全文检索引擎及工具 Lucene Solr

    全文检索引擎及工具 lucence lucence是一个全文检索引擎. lucence代码级别的使用步骤大致如下: 创建文档(org.apache.lucene.document.Document), ...

  5. SSIS SQL Server配置自动作业

    目录: 一. 用SSMS配置作业,自助调度: 二.用SSMS调SSIS包: 一. 用SSMS配置作业,自助调度: 为验证数据,先创建一个表: CREATE TABLE test_table (id I ...

  6. 【Linux】七种运行级别

    运行级别:即系统的运行模式. 级别类型: 0:关机状态. 1:单用户模式. 2:字符界面的多用户模式(不支持网络). 3:字符界面的多用户模式(运行最完整的模式). 4:未分配使用,系统保留. 5:图 ...

  7. 三维重建:SLAM相关的一些术语解释

    SLAM是一个工程问题,再次复习一下工程中可能用到的名词解释. 还是不要看了,高翔的科普读物已经出版了,读他的<slam十四讲>就可以了. 一.度量相关: 世界坐标系:描述图像的平面坐标系 ...

  8. Redis 之string结构及命令详解

    1.set  key  value  ex  秒数   px  毫秒数  nx / xx  设置一个值,注:ex 与 px 同时存在时,取写在后面的一个为有效期,nx表示key不存时设置成功,xx表示 ...

  9. day37-1 面向对象高阶

    目录 面向对象高阶 isinstance issubclass 反射(自省) 模块的使用 放在类的使用 call 面向对象高阶 isinstance 判断是否为实例化对象,以后可以用来取代type 和 ...

  10. php第五节课

    封装 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.o ...