luogu3197 [HNOI2008] 越狱
题目大意
已知序列$P$满足$|P|=N$,(以下所有$i,i\in[1,N]$)$\forall i, P_i\in [1,M]$。求$|\{P|\exists i, P_i =P_{i+1}\}|$。
题解
容易想到运用正难则反的思想,先求出所有情况种数,再求出不符合情况种数。
但这里“所有”是什么?是全排列吗?又是什么的全排列呢?“不符合”又是什么呢?我们说不清楚。
那么怎么想?直接整体考虑太难,我们应当一位一位考虑。$\forall i,P_i$有$M$种取值。因此所有情况种数为$M^N$。关于不符合情况种数,第一位情况有$M$个,以后每一位为了不与前面相等,情况数为$M-1$。由乘法原理,不符合情况为$M(M-1)^{N-1}$。故答案为:$M^N-M(M-1)^{N-1}$。
注意
$(a-b)\mod p\neq a\mod p-b\mod p$,$(a-b)\mod p=(a\mod p-b\mod p+p)\mod p$。
#include <cstdio>
#include <cstring>
using namespace std; #define ll long long ll Mult(ll a, ll b, ll p)
{
ll ans = 0;
while (b)
{
if (1 & b)
ans = (ans + a) % p;
a = (a + a) % p;
b >>= 1;
}
return ans;
} ll Power(ll a, ll n, ll p)
{
ll ans = 1;
while (n)
{
if (n & 1)
ans = Mult(ans, a, p);
a = Mult(a, a, p);
n >>= 1;
}
return ans;
} int main()
{
const ll P = 100003;
ll n, m;
scanf("%lld%lld", &m, &n);
printf("%lld\n", (Power(m, n, P) - Mult(m, Power(m - 1, n - 1, P), P) + P) % P);
return 0;
}
luogu3197 [HNOI2008] 越狱的更多相关文章
- bzoj1008 [HNOI2008]越狱
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5099 Solved: 2207 Description 监狱有 ...
- 【bzoj1008】[HNOI2008]越狱
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7692 Solved: 3296[Submit][Status] ...
- BZOJ 1008: [HNOI2008]越狱 快速幂
1008: [HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生 ...
- BZOJ 1008 [HNOI2008]越狱
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5166 Solved: 2242[Submit][Status] ...
- BZOJ1008: [HNOI2008]越狱-快速幂+取模
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8689 Solved: 3748 Description 监狱有 ...
- BZOJ 1008 [HNOI2008]越狱 (简单排列组合 + 快速幂)
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 10503 Solved: 4558[Submit][Status ...
- 洛谷 P3197 [HNOI2008]越狱 解题报告
P3197 [HNOI2008]越狱 题目描述 监狱有连续编号为\(1-N\)的\(N\)个房间,每个房间关押一个犯人,有\(M\)种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可 ...
- [HNOI2008]越狱 题解(容斥原理+快速幂)
[HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多 ...
- BZOJ 1008 [HNOI2008]越狱 排列组合
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4788 Solved: 2060[Submit][Status] ...
随机推荐
- 【Leetcode】376. Wiggle Subsequence
Description: A sequence of numbers is called a wiggle sequence if the differences between successive ...
- 2.Dubbo开源分布式服务框架(JAVA RPC)
1. Dubbo介绍 Dubbox是阿里巴巴公司开源的一个高性能优秀的服务框架,使得应用可通过高性能RPC(即远程调用)实现服务的输出和输入功能, 可以和Spring框架无集成.Dubbo是一款高性能 ...
- max-age 和 Expires
网页的缓存是由HTTP消息头中的“Cache-control”来控制的,常见的取值有private.no-cache.max-age.must-revalidate等,默认为private. Ex ...
- Django models 常用字段类型
1.CharField字符串字段,存较短的字符串,长文本要用TextField.必须的参数:max_length 字符的最大长度2.TextField容量很大的文本字段.admin中用 <tex ...
- sql server like 在将值转换成数据类型int失败
select * from table where title like '%'?'%'; 采用? 传参会报错:sql server like 在将值转换成数据类型int失败 select * fro ...
- 通用功能类:改变WinForm窗体显示颜色
一.显示窗体调用方法 protected override void OnLoad(EventArgs e) { MDIClientSupport.SetBevel ...
- Arduino 控制超声波测距模块
一.实物图 二.例子代码 用到数字2 和3 引脚,还有两个就是vcc GND两个阴脚,用模块连线比较简单
- CorelDRAW记事本写实图标的制作流程
本篇教程用CorelDRAW快速制作记事本写实图标,在制作的过程中主要使用了位图填充和金属材质的实现,加之一些常用工具的用法处理,最后将对象剪裁至图文框就好了,现在跟小编一起来看看详细的操作吧! 使用 ...
- BZOJ [Poi2000]病毒 AC自动机_DFS_细节
Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...
- Eclipse(含STS)安装插件/软件、更新
安装方式 Eclipse安装插件的三种方式 直接复制安装 离线下载好插件,通常去这个插件的官网去找,就是在线安装的地址?如testng可以去http://beust.com/eclipse即http: ...