【题目链接】

https://www.lydsy.com/JudgeOnline/problem.php?id=1951

【算法】

欧拉定理+中国剩余定理 + lucas定理

【代码】

#include<bits/stdc++.h>
using namespace std;
#define MAXD 40000
typedef long long ll;
const ll P = ;
const ll m[] = {,,,}; ll i,j,n,q,cnt,ans,x;
ll a[],factor[];
ll fac[MAXD+][]; inline void exgcd(ll a,ll b,ll &x,ll &y)
{
if (b == )
{
x = ;
y = ;
} else
{
exgcd(b,a%b,y,x);
y -= a / b * x;
}
}
inline ll CRT()
{
int i;
ll res = ,M,T,x;
for (i = ; i < ; i++)
{
M = (P - ) / m[i];
exgcd(M,m[i],T,x);
T = (T % m[i] + m[i]) % m[i];
res = (res + (a[i] * M % (P - ) * T % (P - )) % (P - )) % (P - );
}
return res;
}
inline ll power(ll a,ll n,ll p)
{
ll b = a,res = ;
while (n)
{
if (n & ) res = res * b % p;
b = b * b % p;
n >>= ;
}
return res;
}
inline void init()
{
int i,j;
for (i = ; i < ; i++) fac[][i] = ;
for (i = ; i <= MAXD; i++)
{
for (j = ; j < ; j++)
{
fac[i][j] = fac[i-][j] * i % m[j];
}
}
}
inline ll C(ll x,ll y,ll p)
{
if (x < y) return ;
if (y == ) return ;
return fac[x][p] * power(fac[y][p]*fac[x-y][p]%m[p],m[p]-,m[p]) % m[p];
}
inline ll lucas(ll x,ll y,ll p)
{
if (y == ) return ;
else return lucas(x/m[p],y/m[p],p) * C(x%m[p],y%m[p],p) % m[p];
}
int main()
{ scanf("%lld%lld",&n,&q);
if (q == P)
{
printf("0\n");
return ;
}
cnt = ;
for (i = ; i <= sqrt(n); i++)
{
if (n % i == )
{
factor[++cnt] = i;
if (i * i != n) factor[++cnt] = n / i;
}
}
init();
for (i = ; i <= cnt; i++)
{
for (j = ; j < ; j++)
{
a[j] = lucas(n,factor[i],j);
}
x = (x + CRT()) % (P - );
}
ans = power(q,x,P);
printf("%lld\n",ans); return ; }

【SDOI 2010】 古代猪文的更多相关文章

  1. 【数学/扩展欧几里得/Lucas定理】BZOJ 1951 :[Sdoi 2010]古代猪文

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

  2. [ SDOI 2010 ] 古代猪文

    \(\\\) Description 一句话题意: 设 \(x=\sum_{d|n} C_n^d\),求 \(G^x\pmod {999911659}\) . 从原题面大段语文中其实不难推出所求. \ ...

  3. BZOJ-1951 古代猪文 (组合数取模Lucas+中国剩余定理+拓展欧几里得+快速幂)

    数论神题了吧算是 1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1573 Solved: 650 [Submit ...

  4. BZOJ 1951: [Sdoi2010]古代猪文( 数论 )

    显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...

  5. 1951: [Sdoi2010]古代猪文

    1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2171  Solved: 904[Submit][Status] ...

  6. BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]

    1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2194  Solved: 919[Submit][Status] ...

  7. 古代猪文:数论大集合:欧拉定理,exgcd,china,逆元,Lucas定理应用

    /* 古代猪文:Lucas定理+中国剩余定理 999911658=2*3*4679*35617 Lucas定理:(m,n)=(sp,tp)(r,q) %p 中国剩余定理:x=sum{si*Mi*ti} ...

  8. [SDOI2010]古代猪文 (欧拉,卢卡斯,中国剩余)

    [SDOI2010]古代猪文 \(solution:\) 这道题感觉综合性极强,用到了许多数论中的知识: 质因子,约数,组合数 欧拉定理 卢卡斯定理 中国剩余定理 首先我们读题,发现题目需要我们枚举k ...

  9. 洛咕 P2480 [SDOI2010]古代猪文

    洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658} ...

  10. BZOJ 1951 【SDOI2010】 古代猪文

    题目链接:古代猪文 好久没写博客了,这次就先写一篇吧…… 题面好鬼……概括起来就是:给出\(N,G(\leqslant 10^9)\),求:\[G^{\sum_{d|n}\binom{n}{d}} \ ...

随机推荐

  1. Android高亮TextView

    HighlightTextView Android文本高亮控件,基于View实现. 特点 文本高亮 单词自动换行 高亮词组保持在同一行显示 截图 Demo Java: public class Mai ...

  2. DeltaFish 校园物资共享平台 第五次小组会议

    软工第五次小组会议 记录人:娄雨禛 会议地点:三教讨论区 会议时间:9:00-10:00 与会人员:软工小组成员 一.前端会议提要 前端分为“2+2”组合进行开发. 底层设计:齐天扬,刘鼎乾 界面美化 ...

  3. 复习java基础第四天(集合:List、Map、Collections、Enumeration)

    一.List: List 代表一个元素有序.且可重复的集合,集合中的每个元素都有其对应的顺序索引 List 允许使用重复元素,可以通过索引来访问指定位置的集合元素. List 默认按元素的添加顺序设置 ...

  4. hadoop中的job.setOutputKeyClass与job.setMapOutputKeyClass

    初学mr时,觉得没什么,但是学了一段时间,重新复习时发现程序中mr程序中一般都会有 hadoop中的job.setOutputKeyClass(theClass)与job.setOutputValue ...

  5. C#第十六节课

    out using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.T ...

  6. [Cerc2007]robotic sort

    splay区间反转练手题 #include <iostream> #include <cstdio> #include <algorithm> using name ...

  7. IDEA返回上一步

    在开发中进入一个方法后想要到原来那行 ctrl+alt+左 回到上一步 ctrl+alt+右 回到下一步

  8. SQLServer · BUG分析 · Agent 链接泄露分析(转载)

    背景 SQLServer Agent作为Windows服务提供给用户定期执行管理任务,这些任务被称为Job:考虑应用镜像的场景如何解决Job同步问题,AWS RDS的做法是不予理会,由用户维护Job, ...

  9. 我的网站恢复访问了,http://FansUnion.cn

    博客网站 http://FansUnion.cn 恢复访问了. 周末,发表几篇原创文章.

  10. 学习EXTJS6(3)基本概念

    ExtJS不再纠缠HTML和CSS上.概念和传统的程序相近.如面板panel,布局Layout.组件Component等等. 1.渲染Render:ExtJS页面在浏览器中装载完成后完全展现出来的一个 ...