最近一直在回顾linear regression model和logistic regression model,但对其中的一些问题都很疑惑不解,知道我看到广义线性模型即Generalized Linear Model后才恍然大悟原来这些模型是这样推导的,在这里与诸位分享一下,具体更多细节可以参考Andrew Ng的课程。

  一、指数分布

  广义线性模型都是由指数分布出发来推导的,所以在介绍GLM之前先讲讲什么是指数分布。指数分布的形式如下:

                 

  η是参数,T(y)是y的充分统计量,即T(y)可以完全表达y,通常T(y)=y。当参数T,b,a都固定的时候,就定义了一个以η为参数的参数簇。实际上,很多的概率分布都是属于指数分布,比如:

  (1)伯努利分布

  (2)正态分布

  (3)泊松分布

  (4)伽马分布

  等等等。。。。

  或许从原本的形式上看不出来他们是指数分布,但是经过一系列的变换之后,就会发现他们都是指数分布。举两个例子,顺便我自己也推导一下。

  伯努利分布:

  

  那么b(y)=1,T(y)=y,η=log(φ/(1-φ)),a(η)=log((1-φ)),则φ=1/(1+e-y),这个就是sigmoid函数的由来。

  同样我们对正态分布做变换,不过在这里我们要假设方差为1,以为方差并不影响我们的回归。

  

  我们可以看到η=µ。

  

  二、广义线性模型

  介绍完指数分布后我们可以来看看广义线性模型是怎样的。

  首先广义线性模型有三个假设,这三个假设即是前提条件也是帮助我们构造模型的关键。

  (1)P(y|x;θ)~ExpFamliy(η);

  (2)对于一个给定x,我们的目标函数为h(x)=E[T(y)|x];

  (3)η=ΘTx

  根据以上三个假设我们就能推导出logistic model 和 最小二乘模型。Logistic model 推导如下:

      h(x)=E[T(y)|x]=E[y|x]=φ=1/(1+e)=1/(1+eTx)

  对于最小二乘模型推导如下:

      h(x)=E[T(y)|x]=E[y|x]=η=µ=ΘTx

  从中我们将把η和原模型参数联系起来的函数称之为正则响应函数。所以对于广义线性模型,我们需要y是怎样的分布,就能推导出相应的模型。有兴趣的可以从多项式分布试试推导出SoftMax回归。

  

[机器学习]Generalized Linear Model的更多相关文章

  1. Bayesian generalized linear model (GLM) | 贝叶斯广义线性回归实例

    一些问题: 1. 什么时候我的问题可以用GLM,什么时候我的问题不能用GLM? 2. GLM到底能给我们带来什么好处? 3. 如何评价GLM模型的好坏? 广义线性回归啊,虐了我快几个月了,还是没有彻底 ...

  2. 广义线性模型(Generalized Linear Model)

    广义线性模型(Generalized Linear Model) http://www.cnblogs.com/sumai 1.指数分布族 我们在建模的时候,关心的目标变量Y可能服从很多种分布.像线性 ...

  3. 广义线性模型(GLM, Generalized Linear Model)

    引言:通过高斯模型得到最小二乘法(线性回归),即:      通过伯努利模型得到逻辑回归,即:      这些模型都可以通过广义线性模型得到.广义线性模型是把自变量的线性预测函数当作因变量的估计值.在 ...

  4. 从线性模型(linear model)衍生出的机器学习分类器(classifier)

    1. 线性模型简介 0x1:线性模型的现实意义 在一个理想的连续世界中,任何非线性的东西都可以被线性的东西来拟合(参考Taylor Expansion公式),所以理论上线性模型可以模拟物理世界中的绝大 ...

  5. Andrew Ng机器学习公开课笔记 -- Generalized Linear Models

    网易公开课,第4课 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 前面介绍一个线性回归问题,符合高斯分布 一个分类问题,logstic回 ...

  6. [Scikit-learn] 1.5 Generalized Linear Models - SGD for Classification

    NB: 因为softmax,NN看上去是分类,其实是拟合(回归),拟合最大似然. 多分类参见:[Scikit-learn] 1.1 Generalized Linear Models - Logist ...

  7. [Scikit-learn] 1.1 Generalized Linear Models - Logistic regression & Softmax

    二分类:Logistic regression 多分类:Softmax分类函数 对于损失函数,我们求其最小值, 对于似然函数,我们求其最大值. Logistic是loss function,即: 在逻 ...

  8. Regression:Generalized Linear Models

    作者:桂. 时间:2017-05-22  15:28:43 链接:http://www.cnblogs.com/xingshansi/p/6890048.html 前言 本文主要是线性回归模型,包括: ...

  9. Generalized Linear Models

    作者:桂. 时间:2017-05-22  15:28:43 链接:http://www.cnblogs.com/xingshansi/p/6890048.html 前言 主要记录python工具包:s ...

随机推荐

  1. 最新版Butterknife plugin支持butterknife7.0.1和兼容butterknife 6.1.0及下面

    JakeWharton 的butterknife帮我们有效的攻克了findViewById及各种view的监听事件泛滥的问题,极大的简化了代码,假设使用了android Studio开发的配上avas ...

  2. HDU 1080 Human Gene Functions - 最长公共子序列(变形)

    传送门 题目大意: 将两个字符串对齐(只包含ACGT,可以用'-'占位),按照对齐分数表(参见题目)来计算最后的分数之和,输出最大的和. 例如:AGTGATG 和 GTTAG ,对齐后就是(为了表达对 ...

  3. 【BZOJ 1012】 [JSOI2008]最大数maxnumber(单调队列做法)

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1012 [题意] [题解] 后加入的元素,如果比之前的元素大, 那么之前的元素比它小的元 ...

  4. 反编译Jar包

    Jar 包(Java Archive)是对 Java 程序的打包,它可能包含源码,也可能没有. 对于有包含源码的 Jar 包,在 Eclipse 工程里设定好 source code 路径后能直接查看 ...

  5. 从Client应用场景介绍IdentityServer4(五)

    原文:从Client应用场景介绍IdentityServer4(五) 本节将在第四节基础上介绍如何实现IdentityServer4从数据库获取User进行验证,并对Claim进行权限设置. 一.新建 ...

  6. Java--面试通关要点

    这里,笔者结合自己过往的面试经验,整理了一些核心的知识清单,帮助读者更好地回顾与复习 Java 服务端核心技术.本文会以引出问题为主,后面有时间的话,笔者陆续会抽些重要的知识点进行详细的剖析与解答. ...

  7. VAssist 使用技巧(函数声明定位,比VS的还要强大)

    1. 有了VAX可以关掉C++导航栏,快捷键ALT+M,显示当前打开文档的所有符号,而且可以输入进行过滤 2. 查找文件,shift+alt+o (直接定位) 3. 查找符号shift+alt+s 4 ...

  8. WPF 3D model - Sphere, Cone, and Cylinder

    原文:WPF 3D model - Sphere, Cone, and Cylinder   Extending Visual3D - Sphere, Cone, and Cylinder http: ...

  9. android延时处理任务范例

    今天要做一个任务,要求图片做button开关,点击出发对应事件.点击打开,图片左边显示几行字体,这几行字体是延时显示的.以下将主要代码附上.以下是main.xml <?xml version=& ...

  10. Oracle 一些实用的DBA语句

    --查询LOB的大小和所在表空间 SELECT A.TABLE_NAME, A.COLUMN_NAME, B.SEGMENT_NAME, B.SEGMENT_TYPE, B.TABLESPACE_NA ...