hdu5386 Cover
grid has a color.Now there are two types of operating:
L x y: for(int i=1;i<=n;i++)color[i][x]=y;
H x y:for(int i=1;i<=n;i++)color[x][i]=y;
Now give you the initial matrix and the goal matrix.There are m operatings.Put
in order to arrange operatings,so that the initial matrix will be the goal matrix after doing these operatings
It's guaranteed that there exists solution.
For each case:
First line has two integer n,m
Then n lines,every
line has n integers,describe
the initial matrix
Then n lines,every
line has n integers,describe
the goal matrix
Then m lines,every
line describe an operating
1≤color[i][j]≤n
T=5
1≤n≤100
1≤m≤500
i-th integer x show that the rank of x-th operating is i
1
3 5
2 2 1
2 3 3
2 1 3
3 3 3
3 3 3
3 3 3
H 2 3
L 2 2
H 3 3
H 1 3
L 2 3
5 2 4 3 1这题看了题解后。感觉挺水的。。由于保证有解,所以能够从后面往前推,遇到整行的颜色和当中没有訪问过的一个操作一样的时候。就把这一行的数都变为0(即随意颜色。由于前面的颜色会被后面的覆盖),当矩阵所有为0就输出结果。 这里假设用set存储的话注意操作符的定义,由于假设定义为x或者y间的比較。可能会把一些同样的操作删除掉。导致WA.#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
int gra[106][106],c[600];
struct node{
int f,x,y,idx;
}b,temp;
bool operator <(node a,node b){
return a.idx<b.idx;
} set<node>myset;
set<node>::iterator it; int main()
{
int n,m,i,j,T,sum,a,x,y,tot,flag,f,t,flag1,idx,num1;
char s[10];
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
sum=n*n;
for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
scanf("%d",&a);
}
}
for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
scanf("%d",&gra[i][j]);
}
}
myset.clear();
for(i=1;i<=m;i++){
scanf("%s%d%d",s,&x,&y);
if(s[0]=='L'){
b.f=1;
}
else b.f=0;
b.x=x;b.y=y;b.idx=i;
myset.insert(b);
}
t=0;
while(1)
{
//if(myset.size()==0)break;// || sum==0
if(sum==0)break;
flag=0;
for(it=myset.begin();it!=myset.end();it++){
temp=*it;
x=temp.x;y=temp.y;f=temp.f;idx=temp.idx;
if(f==1){
flag1=1;tot=0;
for(i=1;i<=n;i++){
if(gra[i][x]==0)continue;
if(gra[i][x]==y)tot++;
else{
flag1=0;break;
}
}
if(tot==0 || flag1==0)continue; flag=1;
for(i=1;i<=n;i++){
if(gra[i][x]==0)continue;
else {gra[i][x]=0;sum--;}
}
t++;c[t]=idx;
myset.erase(it);break;
} else if(f==0){
flag1=1;tot=0;
for(i=1;i<=n;i++){
if(gra[x][i]==0)continue;
if(gra[x][i]==y)tot++;
else{
flag1=0;break;
}
}
if(tot==0 || flag1==0)continue; flag=1;
for(i=1;i<=n;i++){
if(gra[x][i]==0)continue;
else {gra[x][i]=0;sum--;}
}
t++;c[t]=idx;
myset.erase(it);break;
}
}
if(!flag)break;
}
for(i=1;i<=m;i++){
flag=0;
for(j=1;j<=t;j++){
if(i==c[j]){
flag=1;break;
}
}
if(flag==0){
printf("%d ",i);
}
}
for(i=t;i>=1;i--){
if(i==1)printf("%d\n",c[i]);
else printf("%d ",c[i]);
}
}
return 0;
}
/*
100
3 7
2 2 1
2 3 3
2 1 3
3 2 2
1 1 2
1 1 1
L 2 3
L 1 3
H 2 1
H 3 3
L 4 3
L 3 2
H 3 1
*/
hdu5386 Cover的更多相关文章
- Dancing Links and Exact Cover
1. Exact Cover Problem DLX是用来解决精确覆盖问题行之有效的算法. 在讲解DLX之前,我们先了解一下什么是精确覆盖问题(Exact Cover Problem)? 1.1 Po ...
- img及父元素(容器)实现类似css3中的background-size:contain / background-size:cover
img及父元素(容器)实现类似css3中的background-size:contain / background-size:cover <!DOCTYPE html> <html ...
- 集合覆盖 顶点覆盖: set cover和vertex cover
这里将讲解一下npc问题中set cover和vertex cover分别是什么. set cover: 问题定义: 实例:现在有一个集合A,其中包含了m个元素(注意,集合是无序的,并且包含的元素也是 ...
- poj 1266 Cover an Arc.
http://poj.org/problem?id=1266 Cover an Arc. Time Limit: 1000MS Memory Limit: 10000K Total Submiss ...
- HUST 1017 - Exact cover (Dancing Links 模板题)
1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 5584 次提交 2975 次通过 题目描述 There is an N*M matrix with only 0 ...
- background-size的两个属性:cover和contain
两种都不会造成图片失真,其中: (1)cover:相当于宽度等于元素的宽度,高度设为auto: (2)contain:相当于高度等于元素的高度,宽度设为auto: 例如:设置一个高度和宽度都为300p ...
- Dancing Link --- 模板题 HUST 1017 - Exact cover
1017 - Exact cover Problem's Link: http://acm.hust.edu.cn/problem/show/1017 Mean: 给定一个由0-1组成的矩阵,是否 ...
- CSS3 background-size 属性值:cover
当设置值为cover,可以呈现出图片铺满浏览器内容的视觉效果 实例 规定背景图像的尺寸: div { background:url(img_flwr.gif); background-size:80p ...
- background-size的cover和content的用法
background-size:cover; 表示背景图拉伸布满,如果在手机上做的话,背景图片会拉大,失真.这样做不妥 background-size:content; 表示背景图片在内容区域正常显示 ...
随机推荐
- Battle City
Battle City Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7208 Accepted: 2427 Descr ...
- ASCII和ASCII扩展表
- Centos上运行.net core2.0
一.在centos7上安装.net core sdk 微软文档:https://www.microsoft.com/net/learn/get-started/linux/centos 二.直接在Ce ...
- Vim常用又容易忘的命令
一篇讲的不错的教程 :noh 取消搜索高亮 x 删当前光标所在的一个字符. :wq 存盘 + 退出 dd 删除当前行,并把删除的行存到剪贴板里 p 粘贴剪贴板 a → 在光标后插入 /pattern ...
- Django学习案例一(blog):一. 创建project、app
1.创建project 方法1:使用命令行创建项目.在E盘cmd执行如下命令: django-admin.py startproject myblog 方法2:使用pycharm创建项目.放置位置为D ...
- HDFS与java API应用
java代码操作hadoop文件需要用hadoop的jar包,comment,hdfs,yarn,mapreduce,内均有有关jar包,eclipse操作hadoop还需要配置core-site.x ...
- [原创]C++带空格字符串的输入问题
字符串一直是一个重点加难点,很多笔试面试都会涉及,带空格的字符串更是十分常见,现在对字符串的输入问题进行一下总结. C++用cin输入的时候会忽略空格以后的字符,比如 char a[100]; cin ...
- 生物信息之ME, HMM, MEMM, CRF
原文链接:http://bbs.sciencenet.cn/home.php?mod=space&uid=260809&do=blog&id=573755 注:有少量修改!如有 ...
- App测试- adb monkey测试
一. 安装和配置SDK 1. 下载Android SDK并解压.如下图:(如果不存在tool和platform_tool,请点击SDK Manager在线下载和更新) 2.下载完成后,配置SDK环境变 ...
- (转)微服务架构 互联网保险O2O平台微服务架构设计
http://www.cnblogs.com/Leo_wl/p/5049722.html 微服务架构 互联网保险O2O平台微服务架构设计 关于架构,笔者认为并不是越复杂越好,而是相反,简单就是硬道理也 ...