数据库 | Redis 缓存雪崩解决方案
Redis 雪崩
缓存层承载着大量的请求,有效保护了存储层。但是如果由于缓存大量失效或者缓存整体不能提供服务,导致大量的请求到达存储层,会使存储层负载增加,这就是缓存雪崩的场景。
解决缓存雪崩,可以从以下几个方面入手。
1.保持缓存层的高可用性
使用Redis 哨兵模式或者Redis 集群部署方式,即便个别Redis 节点下线,整个缓存层依然可以使用。除此之外,还可以在多个机房部署 Redis,这样即便是机房死机,依然可以实现缓存层的高可用。
2.限流降级组件
无论是缓存层还是存储层都会有出错的概率,可以将它们视为资源。作为并发量较大的分布式系统,假如有一个资源不可用,可能会造成所有线程在获取这个资源时异常,造成整个系统不可用。降级在高并发系统中是非常正常的,比如推荐服务中,如果个性化推荐服务不可用,可以降级补充热点数据,不至于造成整个推荐服务不可用。常见的限流降级组件如 Hystrix、Sentinel 等。
3.缓存不过期
Redis 中保存的 key 永不失效,这样就不会出现大量缓存同时失效的问题,但是随之而来的就是Redis 需要更多的存储空间。
4.优化缓存过期时间
设计缓存时,为每一个 key 选择合适的过期时间,避免大量的 key 在同一时刻同时失效,造成缓存雪崩。
5.使用互斥锁重建缓存
在高并发场景下,为了避免大量的请求同时到达存储层查询数据、重建缓存,可以使用互斥锁控制,如根据 key 去缓存层查询数据,当缓存层为命中时,对 key 加锁,然后从存储层查询数据,将数据写入缓存层,最后释放锁。若其他线程发现获取锁失败,则让线程休眠一段时间后重试。对于锁的类型,如果是在单机环境下可以使用 Java 并发包下的 Lock,如果是在分布式环境下,可以使用分布式锁(Redis 中的 SETNX 方法)。
分布式环境下使用Redis 分布式锁实现缓存重建,优点是设计思路简单,对数据一致性有保障;缺点是代码复杂度增加,有可能会造成用户等待。假设在高并发下,缓存重建期间 key 是锁着的,如果当前并发 1000 个请求,其中 999 个都在阻塞,会导致 999 个用户请求阻塞而等待。
6.异步重建缓存
在这种方案下构建缓存采取异步策略,会从线程池中获取线程来异步构建缓存,从而不会让所有的请求直接到达存储层,该方案中每个Redis key 维护逻辑超时时间,当逻辑超时时间小于当前时间时,则说明当前缓存已经失效,应当进行缓存更新,否则说明当前缓存未失效,直接返回缓存中的 value 值。如在Redis 中将 key 的过期时间设置为 60 min,在对应的 value 中设置逻辑过期时间为 30 min。这样当 key 到了 30 min 的逻辑过期时间,就可以异步更新这个 key 的缓存,但是在更新缓存的这段时间内,旧的缓存依然可用。这种异步重建缓存的方式可以有效避免大量的 key 同时失效。
end:如果你觉得本文对你有帮助的话,记得关注点赞转发,你的支持就是我更新动力。(商务合作私信即可)
数据库 | Redis 缓存雪崩解决方案的更多相关文章
- redis缓存雪崩、缓存穿透、数据库和redis数据一致性
一.缓存雪崩 回顾一下我们为什么要用缓存(Redis):减轻数据库压力或尽可能少的访问数据库. 在前面学习我们都知道Redis不可能把所有的数据都缓存起来(内存昂贵且有限),所以Redis需要对数据设 ...
- redis系列之数据库与缓存数据一致性解决方案
redis系列之数据库与缓存数据一致性解决方案 数据库与缓存读写模式策略 写完数据库后是否需要马上更新缓存还是直接删除缓存? (1).如果写数据库的值与更新到缓存值是一样的,不需要经过任何的计算,可以 ...
- 预防Redis缓存穿透、缓存雪崩解决方案
最近面试中遇到redis缓存穿透.缓存雪崩等问题,特意了解下. redis缓存穿透: 缓存穿透是指用户查询数据,在数据库没有,自然在缓存中也不会有.这样就导致用户查询的时候,在缓存中找不到,每次都要去 ...
- Redis缓存雪崩、缓存穿透、缓存击穿、缓存降级、缓存预热、缓存更新
Redis缓存能够有效地加速应用的读写速度,就DB来说,Redis成绩已经很惊人了,且不说memcachedb和Tokyo Cabinet之流,就说原版的memcached,速度似乎也只能达到这个级别 ...
- Redis缓存雪崩和穿透的解决方法
转载自: https://blog.csdn.net/qq_35433716/article/details/86375506 如何解决缓存雪崩?如何解决缓存穿透?如何保证缓存与数据库双写时一致的问题 ...
- Redis缓存雪崩、缓存穿透、热点Key解决方案和分析
缓存穿透 缓存系统,按照KEY去查询VALUE,当KEY对应的VALUE一定不存在的时候并对KEY并发请求量很大的时候,就会对后端造成很大的压力. (查询一个必然不存在的数据.比如文章表,查询一个不存 ...
- Redis缓存雪崩,缓存穿透,热点key解决方案和分析
缓存穿透 缓存系统,按照KEY去查询VALUE,当KEY对应的VALUE一定不存在的时候并对KEY并发请求量很大的时候,就会对后端造成很大的压力. (查询一个必然不存在的数据.比如文章表,查询一个不存 ...
- [redis] -- 缓存雪崩和缓存穿透、缓存击穿问题解决方案篇
缓存雪崩 缓存同一时间大面积的失效,所以,后面的请求都会落到数据库上,造成数据库短时间内承受大量请求而崩掉 解决方案 事前:尽量保证整个redis集群的高可用性,发现机器宕机尽快补上.选择合适的内存淘 ...
- 第三节:Redis缓存雪崩、击穿、穿透、双写一致性、并发竞争、热点key重建优化、BigKey的优化 等解决方案
一. 缓存雪崩 1. 含义 同一时刻,大量的缓存同时过期失效. 2. 产生原因和后果 (1). 原因:由于开发人员经验不足或失误,大量热点缓存设置了统一的过期时间. (2). 产生后果:恰逢秒杀高峰, ...
随机推荐
- 如何对Nginx日志文件进行切割保存
日积月累下,日志文件会越来越大,日志文件太大严重影响服务器效率,须要定时对日志文件进行切割. 切割的方式有按月切割.按天切割.按小时切割,一般都是按天切割. 那么如何进行切割呢? 思路: 创建日志文件 ...
- celery最佳体验
目录 目录 不使用数据库作为 Broker 不要过分关注任务结果 实现优先级任务 应用 Worker 并发池的动态扩展 应用任务预取数 保持任务的幂等性 应用任务超时限制 善用任务工作流 合理应用 a ...
- android提升
https://blog.csdn.net/lou_liang/article/details/82856531
- 前端基础(十):Bootstrap Switch 选择框开关控制
简介 Bootstrap Switch是一款轻量级插件,可以给选择框设置类似于开关的样式 它是依赖于Bootstrap的一款插件 下载 下载地址 在线引用 导入 因为它是依赖于Bootstrap的一款 ...
- 异步处理的框架Sanic的使用方法和小技巧
Sanic是异步处理的框架,运用Sanic可以开发快速异步响应的web程序.想必大家看到这个都会比较期待和兴奋. 那么如何使用Sanic来实现快速响应呢?我们先来看一看Sanic的基本介绍. Sani ...
- Physical Education Lessons CodeForces - 915E (动态开点线段树)
Physical Education Lessons CodeForces - 915E This year Alex has finished school, and now he is a fir ...
- 如何通过字符串形式导包(importlib模块的使用)
1 模块简介 Python提供了importlib包作为标准库的一部分.目的就是提供Python中import语句的实现(以及__import__函数).另外,importlib允许程序员创建他们自定 ...
- sql查询数据结果发送到邮箱
#!/bin/bash user=root password=xx dbname=xx DATE=`date +%F` #注意:此处mysql要用全路劲,否则计划任务会执行失败 /mydata/mys ...
- C# UdpClient使用
客户端: public class UdpClientManager { //接收数据事件 public Action<string> recvMessageEvent = null; / ...
- ABP 集成 nswag 到 VUE 项目, 自动生成操作类代码
记录日期: 2019-9-22 23:12:39 原文链接:https://www.cnblogs.com/Qbit/p/11569906.html 集成记录: npm install nswag - ...